...
首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Significantly improved interfacial shear strength in graphene/copper nanocomposite via wrinkles and functionalization: A molecular dynamics study
【24h】

Significantly improved interfacial shear strength in graphene/copper nanocomposite via wrinkles and functionalization: A molecular dynamics study

机译:通过皱纹和官能化显着改善了石墨烯/铜纳米复合材料中的界面剪切强度:分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene reinforced metal matrix composites (MMCs) have received extensive research interests as promising structural materials in developing lightweight structures. The mechanical performance of such composites, however, is considerably hindered by weak van der Waal (vdW) interaction between graphene and metal matrix. The present work shows that this challenging issue can be effectively alleviated by the use of chemically functionalized graphene fillers with mechanically induced wrinkles. Our extensive molecular dynamics (MD) simulations on graphene reinforced copper (Cu) composite manifest that the presence of shear-induced wrinkles and chemical modification of graphene using functional groups can significantly increase its surface roughness, enhance the vdW interaction and consequently lead to higher interfacial shear strength (IFSS) between graphene and Cu matrix. Compared with its counterpart functionalized with hydrogen, graphene functionalized with alkyl (methyl, ethyl, propyl, and butyl) offers better interfacial interactions with Cu matrix because these functional groups are longer than hydrogen functional group and can be embedded deeper into the matrix. (C) 2020 Elsevier Ltd. All rights reserved.
机译:石墨烯增强金属基复合材料(MMC)作为开发轻质结构的有前途的结构材料,受到了广泛的研究兴趣。然而,石墨烯和金属基体之间的弱范德华(vdW)相互作用极大地阻碍了这种复合材料的力学性能。目前的研究表明,使用具有机械诱导褶皱的化学功能化石墨烯填料可以有效缓解这一挑战性问题。我们对石墨烯增强铜(Cu)复合材料进行了广泛的分子动力学(MD)模拟,结果表明,剪切诱导褶皱的存在和使用官能团对石墨烯进行化学改性可以显著增加其表面粗糙度,增强vdW相互作用,从而提高石墨烯和铜基体之间的界面剪切强度(IFSS)。与氢官能化的石墨烯相比,烷基官能化的石墨烯(甲基、乙基、丙基和丁基)与铜基体的界面相互作用更好,因为这些官能团比氢官能团长,并且可以嵌入更深的基体中。(C) 2020爱思唯尔有限公司版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号