首页> 外文期刊>Journal of Thermal Spray Technology >Impact Behavior for Successful Particle-Particle Bonding in Vacuum Kinetic Spraying
【24h】

Impact Behavior for Successful Particle-Particle Bonding in Vacuum Kinetic Spraying

机译:真空动力学喷涂中成功粒子粘接的影响行为

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigated the impact behavior of ceramic particles in vacuum kinetic spray (VKS), also known as aerosol deposition method, for successful coating build-up using both experimental methods and numerical simulations. A coating trial and fluid dynamics simulation results showed that there existed a critical impact velocity at which successive coating build-up was possible. This indicated that particle-particle bonding could be achieved through sufficient kinetic energy of impacting particles. According to the results in this study, it is suggested that the critical velocity values for deposition of Al(2)O(3)and SiO(2)in VKS were 400 and 300 m/s, respectively. The AUTODYN simulation results revealed that the initial kinetic energy of particles at high impact velocity should be consumed by fracture and deformation of both impacting particles and the pre-deposited layer. Above critical impact velocity, it is expected that high von Mises stress, pressure, and temperature values contribute to dynamic fragmentation of impacting particles, additional size reduction of crystallites, and consolidation for uncontaminated intimate inter-crystallite faying surface bonding. It is expected that these material responses contributed to the dense and strong VKS coating fabrication.
机译:本研究采用实验方法和数值模拟相结合的方法,研究了陶瓷颗粒在真空动力喷涂(VKS)中的碰撞行为,该方法也称为气溶胶沉积法,用于成功构建涂层。涂层试验和流体动力学模拟结果表明,存在一个临界冲击速度,在该速度下,涂层可能连续堆积。这表明,颗粒间的结合可以通过足够的碰撞动能来实现。根据本研究的结果,建议在VKS中沉积Al(2)O(3)和SiO(2)的临界速度值分别为400和300 m/s。AUTODYN模拟结果表明,在高冲击速度下,颗粒的初始动能应被冲击颗粒和预沉积层的断裂和变形所消耗。在临界冲击速度以上,预计较高的冯·米塞斯应力、压力和温度值有助于冲击颗粒的动态破碎、微晶的额外尺寸减小,以及未受污染的紧密微晶间结合表面的固结。预计这些材料的响应有助于致密和牢固的VKS涂层制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号