首页> 外文期刊>Journal of the Optical Society of America, B. Optical Physics >Effect of crystal anisotropy on light-field-driven currents in dielectric crystal
【24h】

Effect of crystal anisotropy on light-field-driven currents in dielectric crystal

机译:晶体各向异性晶体各向异性对介质晶体轻场驱动电流的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Recent advances in the availability of intense, carrier-envelope phase-stabilized few-cycle lasers have led to the active study of the control of electrons using a light field in atoms, molecules, and solids. The field-driven ultrafast current in solids by strong fields is of far-reaching importance in view of ultrafast devices. Recent ab initio time-dependent density functional theory calculations [Wachter et al., Phys. Rev. Lett. 113, 087401 (2014)] predict that the crystal anisotropy manifests itself as the phase shift between induced currents along different crystal axes. The present work observes such a phase shift, clearly demonstrating that the electric current induced by a strong light field in an anisotropic crystal is sensitive to the orientation. A series of experiments has been carried out with few-cycle laser fields polarized parallel to the axes of quartz, (c) over cap and (a) over cap, respectively. Owing to the anisotropic atomic composition in the crystalline lattice, the transition to the tunneling regime takes place at lower intensity along the (a) over cap axis than along the (c) over cap axis. This implies that at a given tailored intensity, the tunneling transition occurs along the (a) over cap but not along the (c) over cap axis (still in the multiphoton regime). Hence, the currents induced by the two different mechanisms lead to an unequal accumulative phase, thus the nonzero phase shift. This work promotes an understanding of the strong field response of solids at the atomic level and in the subcycle time scale. (C) 2020 Optical Society of America
机译:近年来,随着高强度、载流子包络相位稳定的少周期激光器的出现,人们开始积极研究利用原子、分子和固体中的光场来控制电子。从超快器件的角度来看,强场驱动固体中的超快电流具有深远的意义。最近的从头算时间相关密度泛函理论计算[Wachter等人,Phys.Rev.Lett.113087401(2014)]预测,晶体各向异性表现为沿不同晶轴的感应电流之间的相移。本工作观察到了这种相移,清楚地证明了各向异性晶体中强光场诱导的电流对取向敏感。我们进行了一系列实验,分别使用平行于石英轴偏振的少周期激光场(c)在盖上和(A)在盖上。由于晶格中原子成分的各向异性,沿(a)over cap轴向隧穿区的转变强度低于沿(c)over cap轴的转变强度。这意味着,在给定的定制强度下,隧穿跃迁沿着(a)over cap轴发生,而不是沿着(c)over cap轴发生(仍处于多光子状态)。因此,两种不同机制产生的电流会导致不相等的累积相位,从而导致非零相移。这项工作促进了对固体在原子水平和亚周期时间尺度上的强场响应的理解。(C) 2020美国光学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号