首页> 外文期刊>Journal of the Optical Society of America, A. Optics, image science, and vision >Analysis of radiation force on a uniaxial anisotropic sphere by dual counter-propagating Gaussian beams
【24h】

Analysis of radiation force on a uniaxial anisotropic sphere by dual counter-propagating Gaussian beams

机译:双对流传播高斯光束分析单轴各向异性球上的辐射力分析

获取原文
获取原文并翻译 | 示例
           

摘要

Based on Maxwell?s stress tensor and the generalized Lorenz?Mie theory, a theoretical approach is introduced to study the radiation force exerted on a uniaxial anisotropic sphere illuminated by dual counter-propagating (CP) Gaussian beams. The beams propagate with arbitrary direction and are expanded in terms of the spherical vector wave functions (SVWFs) in a particle coordinate system using the coordinate rotation theorem of the SVWFs. The total expansion coefficients of the incident fields are derived by superposition of the vector fields. Using Maxwell stress tensor analysis, the analytical expressions of the radiation force on a homogeneous absorbing uniaxial anisotropic sphere are obtained. The accuracy of the theory is verified by comparing the radiation forces of the anisotropic sphere reduced to the special cases of an isotropic sphere. In order to study the equilibrium state, the effects of beam parameters, particle size parameters, and anisotropy parameters on the radiation force are discussed in detail. Compared with the isotropic particle, the equilibrium status is sensitive to the anisotropic parameters. Moreover, the properties of optical force on a uniaxial anisotropic sphere in a single Gaussian beam trap and Gaussian standing wave trap are compared. It indicates that the CP Gaussian beam trap may more easily capture or confine the anisotropic particle. However, the radiation force exerted on an anisotropic sphere exhibits very different properties when the beams do not propagate along the primary optical axis. The influence of the anisotropic parameter on the radiation force by CP Gaussian beams is different from that of a single Gaussian beam. In summary, even for anisotropic particles, the Gaussian standing wave trap also exhibits significant advantages when compared with the single Gaussian beam trap. The theoretical predictions of radiation forces exerted on a uniaxial anisotropic sphere by dual Gaussian beams provide effective ways to achieve the improvement of optical tweezers as well as the capture, suspension, and high-precision delivery of anisotropic particles. ? 2021 Optical Society of America
机译:基于麦克斯韦?s应力张量与广义洛伦兹?Mie理论是研究双反传(CP)高斯光束照射下单轴各向异性球面辐射力的一种理论方法。光束以任意方向传播,并利用球矢量波函数的坐标旋转定理在粒子坐标系中展开。通过矢量场的叠加,导出了入射场的总展开系数。利用麦克斯韦应力张量分析,得到了均匀吸收单轴各向异性球体上辐射力的解析表达式。通过将各向异性球的辐射力简化为各向同性球的特殊情况,验证了理论的准确性。为了研究平衡态,详细讨论了束流参数、颗粒尺寸参数和各向异性参数对辐射力的影响。与各向同性粒子相比,平衡态对各向异性参数敏感。此外,还比较了单轴各向异性球面在单高斯光束阱和高斯驻波阱中的光力特性。这表明CP高斯光束陷阱可以更容易地捕获或限制各向异性粒子。然而,当光束不沿主光轴传播时,施加在各向异性球体上的辐射力表现出非常不同的性质。各向异性参数对CP高斯光束辐射力的影响不同于单个高斯光束。总之,即使对于各向异性粒子,高斯驻波阱与单一高斯光束阱相比也显示出显著的优势。双高斯光束对单轴各向异性球体辐射力的理论预测为实现光镊的改进以及各向异性粒子的捕获、悬浮和高精度传输提供了有效途径?2021美国光学学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号