首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels
【24h】

Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels

机译:在多尺度水平下电纺芯壳支架的微观结构依赖性机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical factors among many physiochemical properties of scaffolds for stem cell-based tissue engineering significantly affect tissue morphogenesis by controlling stem cell behaviors including proliferation and phenotype-specific differentiation. Core-shell electrospinning provides a unique opportunity to control mechanical properties of scaffolds independent of surface chemistry, rendering a greater freedom to tailor design for specific applications. In this study, we synthesized electrospun core-shell scaffolds having different core composition and/or core to-shell dimensional ratios. Two independent biocompatible polymer systems, polyetherketoneketone (PEKK) and gelatin as the core materials while maintaining the shell polymer with polycaprolactone (PCL), were utilized. The mechanics of such scaffolds was analyzed at the microscale and macroscales to determine the potential implications it may hold for cell material and tissue-material interactions. The mechanical properties of individual core-shell fibers were controlled by core-shell composition and structure. The individual fiber modulus correlated with the increase in percent core size ranging from 0.55 +/- 0.10 GPa to 1.74 +/- 0.22 GPa and 0.48 +/- 0.12 GPa to 1.53 +/- 0.12 GPa for the PEKK-PCL and gelatin-PCL fibers, respectively. More importantly, it was demonstrated that mechanical properties of the scaffolds at the macroscale were dominantly determined by porosity under compression. The increase of scaffold porosity from 70.2%+/- 1.0% to 93.2%+/- 0.5% by increasing the core size in the PEKK-PCL scaffold resulted in the decrease of the compressive elastic modulus from 227.67 +/- 20.39 kPa to 14.55 +/- 1.43 kPa while a greater changes in the porosity of gelatin-PCL scaffold from 54.5%+/- 4.2% to 89.6%+/- 0.4% resulted in the compressive elastic modulus change from 484.01 +/- 30.18 kPa to 17.57 +/- 1.40 kPa. On the other hand, the biphasic behaviors under tensile mechanical loading result in a range from a minimum of 5.42 +/- 1.05 MPa to a maximum of 12.00 +/- 1.96 MPa for the PEKK-PCL scaffolds, and 10.19 +/- 4.49 MPa to 22.60 +/- 2.44 MPa for the gelatin-PCL scaffolds. These results suggest a feasible approach for precisely controlling the local and global mechanical characteristics, in addition to independent control over surface chemistry, to achieve a desired tissue morphogenesis using the core-shell electrospinning. (C) 2015 Elsevier Ltd. All rights reserved.
机译:基于干细胞的组织工程支架的许多理化性质中的机械因素通过控制干细胞行为(包括增殖和表型特异性分化)显著影响组织形态发生。核壳静电纺丝提供了一个独特的机会,可以独立于表面化学来控制支架的机械性能,为特定应用定制设计提供了更大的自由度。在本研究中,我们合成了具有不同核组成和/或核壳尺寸比的电纺核壳支架。使用了两种独立的生物相容性聚合物系统,聚醚酮酮(PEKK)和明胶作为核心材料,同时使用聚己内酯(PCL)保持壳聚合物。对这种支架的力学进行了微观和宏观分析,以确定其对细胞材料和组织材料相互作用的潜在影响。单个核壳纤维的力学性能受核壳组成和结构的控制。PEKK-PCL和明胶PCL纤维的单个纤维模量与芯尺寸百分比的增加相关,分别为0.55+/-0.10 GPa至1.74+/-0.22 GPa和0.48+/-0.12 GPa至1.53+/-0.12 GPa。更重要的是,研究表明,宏观尺度下支架的力学性能主要由压缩下的孔隙率决定。通过增加PEKK-PCL支架中的核心尺寸,支架孔隙率从70.2%+/-1.0%增加到93.2%+/-0.5%,导致压缩弹性模量从227.67+/-20.39 kPa减少到14.55+/-1.43 kPa,而明胶PCL支架孔隙率从54.5%+/-4.2%增加到89.6%+/-0.4%,导致压缩弹性模量从484.01+/-2%30.18千帕至17.57+/-1.40千帕。另一方面,拉伸机械载荷下的两相行为导致PEKK-PCL支架的最小值为5.42+/-1.05 MPa,最大值为12.00+/-1.96 MPa,明胶PCL支架的最小值为10.19+/-4.49 MPa,最大值为22.60+/-2.44 MPa。这些结果为精确控制局部和整体机械特性提供了一种可行的方法,除了对表面化学进行独立控制外,还可以使用核壳静电纺丝实现所需的组织形态发生。(C) 2015爱思唯尔有限公司版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号