首页> 外文期刊>Journal of Mathematical Biology >A stoichiometric organic matter decomposition model in a chemostat culture
【24h】

A stoichiometric organic matter decomposition model in a chemostat culture

机译:化疗培养中的化学计量有机质分解模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Biodegradation, the disintegration of organic matter by microorganism, is essential for the cycling of environmental organic matter. Understanding and predicting the dynamics of this biodegradation have increasingly gained attention from the industries and government regulators. Since changes in environmental organic matter are strenuous to measure, mathematical models are essential in understanding and predicting the dynamics of organic matters. Empirical evidence suggests that grazers' preying activity on microorganism helps to facilitate biodegradation. In this paper, we formulate and investigate a stoichiometry-based organic matter decomposition model in a chemostat culture that incorporates the dynamics of grazers. We determine the criteria for the uniform persistence and extinction of the species and chemicals. Our results show that (1) if at the unique internal steady state, the per capita growth rate of bacteria is greater than the sum of the bacteria's death and dilution rates, then the bacteria will persist uniformly; (2) if in addition to this, (a) the grazers' per capita growth rate is greater than the sum of the dilution rate and grazers' death rate, and (b) the death rate of bacteria is less than some threshold, then the grazers will persist uniformly. These conditions can be achieved simultaneously if there are sufficient resources in the feed bottle. As opposed to the microcosm decomposition models' results, in a chemostat culture, chemicals always persist. Besides the transcritical bifurcation observed in microcosm models, our chemostat model exhibits Hopf bifurcation and Rosenzweig's paradox of enrichment phenomenon. Our sensitivity analysis suggests that the most effective way to facilitate degradation is to decrease the dilution rate.
机译:生物降解是微生物对有机物的分解,是环境有机物循环的必要条件。了解和预测这种生物降解的动力学越来越受到行业和政府监管机构的关注。由于环境有机物的变化很难测量,因此数学模型对于理解和预测有机物的动态至关重要。经验证据表明,食草动物对微生物的捕食活动有助于促进生物降解。在本文中,我们制定并研究了化学计量学为基础的有机物分解模型在恒化器文化,其中纳入了食草动物的动态。我们确定了物种和化学品的统一持久性和灭绝标准。我们的结果表明:(1)如果在唯一的内部稳定状态下,细菌的人均生长率大于细菌的死亡率和稀释率之和,那么细菌将均匀地持续存在;(2) 如果除此之外,(a)食草动物的人均增长率大于稀释率和食草动物死亡率之和,以及(b)细菌死亡率小于某个阈值,那么食草动物将保持一致。如果饲料瓶中有足够的资源,这些条件可以同时实现。与微观分解模型的结果相反,在恒化器培养中,化学物质总是持续存在。除了微观模型中观察到的跨临界分岔外,我们的恒化器模型还表现出Hopf分岔和Rosenzweig的富集现象悖论。我们的敏感性分析表明,促进降解的最有效方法是降低稀释率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号