首页> 外文期刊>Journal of loss prevention in the process industries >Explosion regions of 1,3-dioxolane/nitrous oxide and 1,3-dioxolane/air with different inert gases- Experimental data and numerical modelling
【24h】

Explosion regions of 1,3-dioxolane/nitrous oxide and 1,3-dioxolane/air with different inert gases- Experimental data and numerical modelling

机译:1,3-二氧戊环/氧化氮的爆炸区域和具有不同惰性气体的1,3-二氧戊烷/空气 - 实验数据和数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, experimental determination and modelling investigations for the explosion regions of 1,3-dioxolane/inert gas/N2O and 1,3-dioxolane/inert gas/air mixtures were carried out and compared. The experimental measurements were carried out at 338 & nbsp;K and atmospheric pressure according to EN1839 method T using the inert gases N-2, CO2, He and Ar. The results showed that the ratio of the lower explosion limit in N2O (LELN2O) to the lower explosion limit in air (LELair) is 0.52 and the ratio of the maximum oxygen content in air (MOCair) to the limiting & nbsp;oxidizer & nbsp;fraction in nitrous oxide (LOFN2O) is 0.36 & nbsp;+/-& nbsp;0.02 independent of the inert gas. When comparing the inert gas amount at the apex based on the pure oxidizing component, which is O-2 & nbsp;in case of air, N2O-containing mixtures need less inert gas to reach the limiting oxidizer quantity whereas the efficiency of inert gases is in the same order. The coefficients of nitrogen equivalency however were found to differ to some extent. The explosion regions of 1,3-dioxolane/inert gas/oxidizer mixtures were modelled using the calculated & nbsp;adiabatic flame temperature & nbsp;profile (CAFTP) method as well as corrected adiabatic flame temperatures. The results indicate good agreement with experimental data for CO2, N-2 & nbsp;and Ar- containing mixtures. The noticeable deviations that occur when He is the inert gas are due to the lacking transport data of that mixture.
机译:在本研究中,对1,3-二氧环烷/惰性气体/N2O和1,3-二氧环烷/惰性气体/空气混合物的爆炸区域进行了实验测定和模拟研究,并进行了比较。实验测量在338处进行;K和大气压力,根据EN1839方法T,使用惰性气体N-2、CO2、He和Ar。结果表明,N2O中的爆炸下限(LELN2O)与空气中的爆炸下限(LELair)之比为0.52,空气中的最大氧含量(MOCair)与极限;氧化剂;一氧化二氮(LOFN2O)中的分数为0.36+/-nbsp;0.02,与惰性气体无关。根据纯氧化成分(O-2)比较顶点处的惰性气体量时;如果是空气,含N2O的混合物需要较少的惰性气体才能达到极限氧化剂量,而惰性气体的效率是相同的。然而,氮当量系数在一定程度上有所不同。1,3-二氧戊环/惰性气体/氧化剂混合物的爆炸区域使用计算出的;绝热火焰温度;轮廓法(CAFTP)以及修正的绝热火焰温度。结果表明,与CO2、N-2的实验数据吻合良好;以及含氩混合物。当他是惰性气体时发生的明显偏差是由于缺乏该混合物的传输数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号