...
首页> 外文期刊>Journal of instrumentation: an IOP and SISSA journal >Electronics design and system integration of the ATLAS New Small Wheels
【24h】

Electronics design and system integration of the ATLAS New Small Wheels

机译:电子设计与系统集成的地图集新的小轮子

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The upgrades of the Large Hadron Collider (LHC) at CERN and the experiments in 2019/20 and 2024/26 will allow to increase the instantaneous luminosity to L = 2 × 10~(34) cm~(-2)s~(-1) and L = 5 - 7 × 10~(34) cm~(-2)s~(-1), respectively. For the High Luminosity (HL) HL-LHC phase, the expected mean number of interactions per bunch crossing will be 55 at L = 2 × 10~(34) cm~(-2)s~(-1) and 140 at L = 5 × 10~(34) cm~(-2)s~(-1). This increase drastically impacts the ATLAS trigger system and trigger rates. For the ATLAS Muon Spectrometer, a replacement of the innermost endcap stations, the so-called "Small Wheels", which are operating in a magnetic field, is therefore planned for 2019/20 to be able to maintain a low pT threshold for single muons and excellent tracking capability in the HL-LHC regime. The New Small Wheels will feature two new detector technologies: resistive Micromegas and small strip Thin Gap Chambers comprising a system of 2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives fully compliant with the post-2026 HL-LHC operation. To allow for some safety margin, the design studies assume a maximum instantaneous luminosity of L = 7 × 10~(34) cm~(-2)s~(-1), 200 pile-up events, trigger rates of 1MHz at Level-0 and 400 KHz at Level-1. A radiation dose of 1700 Gy (innermost radius) is expected. The on-detector electronics will be implemented on some 8000 boards; four different custom ASICs will be used. The large number of readout channels, high speed output data rate, harsh radiation and magnetic environment, small available space, poor access and low power consumption all impose great challenges for the system design. The overall design and first results from integration of the electronics in a vertical slice test will be presented.
机译:欧洲核子研究中心(CERN)大型强子对撞机(LHC)的升级以及2019/20年和2024/26年的实验将使瞬时光度分别提高到L=2×10~(34)cm-2 s-1和L=5-7×10~(34)cm-2 s-1。对于高亮度(HL)HL-LHC相位,在L=2×10~(34)cm-2 s-1时,每个束团交叉的预期平均相互作用数为55,在L=5×10~(34)cm-2 s-1时为140。这一增长极大地影响了ATLAS触发系统和触发率。ATLASμ子光谱仪是最里面的端盖站的替代品,在磁场中运行的所谓“小轮”,因此计划在2019/20年使用,以保持单个μ子的低pT阈值,并在HL-LHC状态下具有出色的跟踪能力。新的小轮将采用两种新的探测器技术:电阻式微型传感器和由240万个读出通道组成的窄带薄间隙室。这两种探测器技术将提供完全符合2026年后HL-LHC操作的触发和跟踪原语。考虑到一定的安全裕度,设计研究假设最大瞬时光度为L=7×10~(34)cm-2 s-1,200个堆积事件,0级触发频率为1MHz,1级触发频率为400kHz。预计辐射剂量为1700 Gy(最内侧半径)。探测器上的电子设备将安装在大约8000块电路板上;将使用四种不同的定制ASIC。大量的读出通道、高速的输出数据率、恶劣的辐射和磁环境、较小的可用空间、较差的访问和低功耗都给系统设计带来了巨大的挑战。将介绍整体设计和垂直切片测试中电子集成的初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号