首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Brittle Faulting of Ductile Rock Induced by Pore Fluid Pressure Build-Up
【24h】

Brittle Faulting of Ductile Rock Induced by Pore Fluid Pressure Build-Up

机译:孔隙流体压力施加韧性岩石的脆性故障

获取原文
获取原文并翻译 | 示例
       

摘要

Under upper crustal conditions, deformations are primarily brittle (i.e., localized) and accommodated by frictional mechanisms. At greater depth, deformations are ductile (i.e., distributed) and accommodated by crystal plasticity, diffusion mass transfer or cataclastic flow. The transition from the brittle to the ductile domain is not associated with a critical depth, but rather varies in time and space. One main parameter controlling the variation of this transition is the pore fluid pressure. On the one hand, a pore fluid pressure increase reduces the effective stresses and possibly increases the strain rate, bringing the system closer to brittle conditions. On the other hand, pore fluid can favor ductile mechanisms, mostly via chemical effects, by facilitating intra-crystalline plasticity, enhancing fluid-solid diffusion and fracture healing/sealing. We report triaxial laboratory experiments that investigated the effect of pore fluid pressure increase during the ductile deformation of Tavel limestone. Three injection rates were tested: 1, 5, and 10 MPa/min. We demonstrate that: (1) Under initially ductile conditions pore fluid pressure increase immediately turns the system from compaction to dilation. (2) Dilation is due to the development of localized shear fractures. However, the macroscopic localization of the deformation is not instantaneous when the ductile to brittle transition is surpassed; a transient creeping phase is first needed. (3) To reach macroscopic brittle failure of initially ductile samples, a critical dilatancy is required. (4) Injection rate controls the final fracture distribution. We demonstrate that pore pressure build-up in a rock undergoing ductile deformation can induce shear fracturing of the system.
机译:在上地壳条件下,变形主要是脆性的(即局部的),并由摩擦机制调节。在更大的深度,变形是韧性的(即分布的),并由晶体塑性、扩散传质或碎裂流调节。从脆性区域到韧性区域的转变与临界深度无关,而是在时间和空间上发生变化。控制这种转变变化的一个主要参数是孔隙流体压力。一方面,孔隙流体压力的增加会降低有效应力,并可能增加应变率,使系统更接近脆性条件。另一方面,孔隙流体通过促进晶内塑性、增强液固扩散和裂缝愈合/封闭,主要通过化学效应,有利于韧性机制。我们报告了三轴实验室实验,研究了塔维尔石灰岩韧性变形过程中孔隙流体压力增加的影响。测试了三种注入速率:1、5和10 MPa/min。我们证明:(1)在初始韧性条件下,孔隙流体压力的增加会立即使系统从压实变为膨胀。(2) 扩张是由于局部剪切裂缝的发展。然而,当超过韧脆转变时,变形的宏观局部化不是瞬时的;首先需要一个瞬态爬行阶段。(3) 为了达到初始韧性试样的宏观脆性破坏,需要临界剪胀。(4) 注入速率控制最终的裂缝分布。我们证明,在经历韧性变形的岩石中,孔隙压力的增加会导致系统的剪切破裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号