首页> 外文期刊>Journal of Functional Analysis >Linking in infinite dimensional spaces using the Leray-Schauder index
【24h】

Linking in infinite dimensional spaces using the Leray-Schauder index

机译:使用Leray-Schauder索引链接无限尺寸空间

获取原文
获取原文并翻译 | 示例
           

摘要

Many problems arising in science and engineering call for the solving of the Euler-Lagrange equations of functionals. Thus, solving the Euler-Lagrange equations is tantamount to finding critical points of the corresponding functional. An idea that has been very successful is to find appropriate sets that separate the functional. This method is called linking. Two sets A, B are said to separate a functional G if the supremum of G on A is less than or equal to the infimum of G on B. Two sets of the space are said to link if they produce a critical sequence whenever they separate a functional. If the critical sequence has a convergent sub-sequence, then that produces a critical point. Finding sets that separate a functional is quite easy, but determining whether or not the sets link is quite another story. It appears that the only way we can check to see if two sets link, is to require that one of them be contained in a finite-dimensional subspace. The reason is that in order to verify the definition, we need to invoke the Brouwer fixed point theorem. Our aim is to find a counterpart of linking that holds true when both sets are infinite dimensional. We adjust our definitions to accommodate infinite dimensions. These definitions reduced to the usual definitions when one set is finite dimensional. In order to prove the corresponding theorems, we make adjustments to the topology of the space and introduce infinite dimensional splitting. This allows us to use a form of compactness on infinite dimensional subspaces which does not exist under the usual topology. We lose the Brouwer index, but we are able to replace it with the Leray-Schauder index. We carry out the details in Sections 5 and 6. In Section we solve a system of equations which require infinite dimensional splitting. (C) 2021 Elsevier Inc. All rights reserved.
机译:科学和工程中出现的许多问题都需要求解泛函的欧拉-拉格朗日方程。因此,求解欧拉-拉格朗日方程相当于找到相应泛函的临界点。一个非常成功的想法是找到合适的集合来分隔函数。这种方法叫做链接。如果A上G的上确界小于或等于B上G的下确界,则称两组A,B分开一个泛函G。如果两组空间在分开一个泛函时产生一个临界序列,则称其为连接。如果临界序列有收敛子序列,则产生临界点。寻找分开一个函数的集合是相当容易的,但确定集合是否链接则完全是另一回事。看来,我们能检查两个集合是否链接的唯一方法,是要求其中一个集合包含在有限维子空间中。原因是为了验证定义,我们需要调用Brouwer不动点定理。我们的目标是找到当两个集合都是无限维的时候,链接的对应物。我们调整我们的定义以适应无限的维度。当一个集合是有限维的时,这些定义简化为通常的定义。为了证明相应的定理,我们调整了空间的拓扑结构,引入了无限维分裂。这允许我们在无限维子空间上使用一种紧性形式,这种紧性在通常的拓扑结构下是不存在的。我们失去了Brouwer指数,但我们可以用Leray Schauder指数来代替它。我们执行第5节和第6节中的细节。在第节中,我们求解一个需要无限维分裂的方程组。(c)2021爱思唯尔公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号