...
首页> 外文期刊>Journal of Composite Materials >Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers
【24h】

Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers

机译:用锆二硼化锆纳米纤维增强SiC - 碳/酚醛纳米复合材料的耐高温性

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon fiber-reinforced composites with matrices containing ultra-high temperature ceramics show excellent potential as high ablation-resistant materials. In this study, two non-oxide nanostructures, ZrB_(2)nanofibers and SiC nanoparticles, as reinforcement phases were utilized to develop the carbon/phenolic-ZrB_(2)-SiC (C/Ph-ZS) nanocomposite for the first time. Thermogravimetry analysis illustrated that the residue yield of C/Ph composite at high temperatures was increased by the introduction of above-mentioned nanostructure ceramics. The addition of 7?wt% of ZrB_(2)/SiC nanoadditives homogeneously in a C/Ph composite resulted in an enhancement of the room temperature thermal diffusivity, from 0.00622 to 0.00728 cm~(2)/s. The incorporation of 4–7?wt% of ZrB_(2)/SiC nanofillers in C/Ph composites leads to a reinforced material with about 73% increasing of Shore D hardness. The modified thermal behavior of prepared nanocomposites was examined using oxyacetylene torch at 2500°C for 160?s. It suggested that the C/Ph-ZS7% nanocomposites with lower density may drastically contribute to meliorate the thermal insulation and ablative properties. The linear ablation rates of C/Ph composites were decreased after adding 7?wt% ZrB_(2)/SiC nanofillers by 18%. The formation of a dense and uniform SiO_(2)and ZrO_(2)layer on the ablated surface of C/Ph-ZS nanocomposites could function as an effective oxygen barrier which greatly reduced the ablation rates of the nanocomposites because of the evaporation at elevated temperature, which absorbs heat from the flame and reduces the erosive attack to C/Ph. The ablated C/Ph-ZS nanocomposite with complicated cross-section structure displayed four dense oxidized, porous surface, transient and matrix regions.
机译:含超高温陶瓷基体的碳纤维增强复合材料作为高抗烧蚀材料具有良好的应用前景。本研究首次采用两种非氧化物纳米结构,即ZrB_2纳米纤维和SiC纳米颗粒作为增强相,制备了碳/酚醛-ZrB_2)-SiC(C/Ph ZS)纳米复合材料。热重分析表明,上述纳米结构陶瓷的引入提高了C/Ph复合材料在高温下的残余产率。加7?在C/Ph复合材料中,ZrB_2/SiC纳米添加剂的重量百分比均匀地增加了室温热扩散率,从0.00622增加到0.00728 cm~(2)/s?在C/Ph复合材料中,ZrB_2/SiC纳米填料的重量百分比导致肖氏D硬度增加约73%。使用氧乙炔炬在2500°C下对制备的纳米复合材料进行了160°C的改性热行为研究?s、 这表明,密度较低的C/Ph-ZS7%纳米复合材料可能会显著改善隔热和烧蚀性能。添加7?后,C/Ph复合材料的线性烧蚀率降低?重量百分比为18%的ZrB_2/SiC纳米填料。在C/Ph ZS纳米复合材料的烧蚀表面上形成致密均匀的SiO_2和ZrO_2层可以作为有效的氧气屏障,由于高温下的蒸发,大大降低了纳米复合材料的烧蚀速率,烧蚀后的C/Ph-ZS纳米复合材料具有复杂的截面结构,呈现出四个致密的氧化、多孔表面、瞬态和基体区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号