首页> 外文期刊>Journal of chemical theory and computation: JCTC >Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model
【24h】

Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model

机译:用适应的粗粒模型模拟Fus蛋白凝聚物

获取原文
获取原文并翻译 | 示例
           

摘要

Disordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physicochemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein–protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low-complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of α_(c) ≈ 0.6, FUS-LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model. For a scaling factor α = 0.65, we recover experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS-LCD condenses. In the region of phase separation, we simulate FUS-LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS-LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01–0.4 mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02 Pa s for the FUS-LCD droplets with scaling factors α in the range of 0.625–0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.
机译:无序的蛋白质和核酸可以凝结成水滴,类似于在活细胞中观察到的无膜细胞器。MD模拟提供了一种独特的工具来描述控制这些生物分子缩合物形成的分子相互作用、其物理化学性质以及控制其组成和大小的因素。然而,生物高聚物的缩合敏感地取决于不同能量和熵贡献之间的平衡。在这里,我们开发了一种通用策略,用于微调生物高聚物相分离分子动力学模拟的势能函数。我们重新平衡蛋白质-蛋白质相互作用对溶剂化和熵的贡献,以匹配在稀溶液和冷凝液之间转移蛋白质的多余自由能。我们通过使用重新平衡的马提尼模型模拟FUS低复杂度域(LCD)的液滴形成来说明这种形式。通过标度粗粒度马提尼势能函数中非键相互作用的强度,我们绘制了蛋白质浓度和相互作用强度平面上的相图。高于临界比例因子αc)≈ 0.6,观察到FUS-LCD凝聚,其中α=1和0对应于马提尼模型中的完全相互作用和排斥相互作用。当比例因子α=0.65时,我们恢复稀相和密相的实验密度,从而使多余的蛋白质将自由能转移到液滴中,并使FUS-LCD冷凝的饱和浓度。在相分离区域,我们模拟了四种不同尺寸的FUS-LCD液滴与稀释相和浓缩的FUS-LCD平板稳定平衡数十微秒,聚合超过一毫秒。我们根据液滴形状的波动和两相界面的毛细波状加宽确定了0.01–0.4 mN/m范围内的表面张力。根据蛋白质端到端距离的动力学,我们估计了比例因子α在0.625–0.75范围内的FUS-LCD液滴在0.001到0.02 Pa s之间的剪切粘度,我们观察到液滴。液滴内部的显著水合作用使蛋白质保持流动,液滴保持流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号