...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning
【24h】

Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning

机译:预测密度函数理论 - 质量核磁共振经由δ机学习的核磁共振

获取原文
获取原文并翻译 | 示例
           

摘要

First-principles prediction of nuclear magnetic resonance chemical shifts plays an increasingly important role in the interpretation of experimental spectra, but the required density functional theory (DFT) calculations can be computationally expensive. Promising machine learning models for predicting chemical shieldings in general organic molecules have been developed previously, though the accuracy of those models remains below that of DFT. The present study demonstrates how much higher accuracy chemical shieldings can be obtained via the Δ-machine learning approach, with the result that the errors introduced by the machine learning model are only one-half to one-third the errors expected for DFT chemical shifts relative to experiment. Specifically, an ensemble of neural networks is trained to correct PBE0/6-31G chemical shieldings up to the target level of PBE0/6-311+G(2d,p). It can predict ~(1)H, ~(13)C, ~(15)N, and ~(17)O chemical shieldings with root-mean-square errors of 0.11, 0.70, 1.69, and 2.47 ppm, respectively. At the same time, the Δ-machine learning approach is 1–2 orders of magnitude faster than the target large-basis calculations. It is also demonstrated that the machine learning model predicts experimental solution-phase NMR chemical shifts in drug molecules with only modestly worse accuracy than the target DFT model. Finally, the ability to estimate the uncertainty in the predicted shieldings based on variations within the ensemble of neural network models is also assessed.
机译:核磁共振化学位移的第一性原理预测在解释实验光谱中扮演着越来越重要的角色,但所需的密度泛函理论(DFT)计算可能会在计算上很昂贵。以前已经开发出了预测一般有机分子中化学屏蔽的有前途的机器学习模型,尽管这些模型的精度仍然低于DFT。目前的研究表明,通过Δ机器学习方法可以获得更高精度的化学屏蔽,结果是机器学习模型引入的误差仅为DFT化学位移相对于实验的预期误差的一半到三分之一。具体来说,训练一组神经网络,将PBE0/6-31G化学屏蔽校正到PBE0/6-311+G(2d,p)的目标水平。它可以预测~(1)H、~(13)C、~(15)N和~(17)O化学屏蔽,均方根误差分别为0.11、0.70、1.69和2.47 ppm。同时,Δ机器学习方法比目标大基础计算快1-2个数量级。研究还表明,机器学习模型预测药物分子中实验溶液相NMR化学位移的准确度仅略低于目标DFT模型。最后,还评估了基于神经网络模型集合内的变化估计预测防护中不确定性的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号