...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage
【24h】

Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage

机译:许多身体非共价系统中的随机阶段近似:十二型水笼中的甲烷

获取原文
获取原文并翻译 | 示例
           

摘要

The many-body expansion (MBE) of energies of molecular clusters or solids offers a way to detect and analyze errors of theoretical methods that could go unnoticed if only the total energy of the system was considered. In this regard, the interaction between the methane molecule and its enclosing dodecahedral water cage, CH_(4)···(H_(2)O)_(20), is a stringent test for approximate methods, including density functional theory (DFT) approximations. Hybrid and semilocal DFT approximations behave erratically for this system, with three- and four-body nonadditive terms having neither the correct sign nor magnitude. Here, we analyze to what extent these qualitative errors in different MBE contributions are conveyed to post-Kohn–Sham random-phase approximation (RPA), which uses approximate Kohn–Sham orbitals as its input. The results reveal a correlation between the quality of the DFT input states and the RPA results. Moreover, the renormalized singles energy (RSE) corrections play a crucial role in all orders of the many-body expansion. For dimers, RSE corrects the RPA underbinding for every tested Kohn–Sham model: generalized-gradient approximation (GGA), meta-GGA, (meta-)GGA hybrids, as well as the optimized effective potential at the correlated level. Remarkably, the inclusion of singles in RPA can also correct the wrong signs of three- and four-body nonadditive energies as well as mitigate the excessive higher-order contributions to the many-body expansion. The RPA errors are dominated by the contributions of compact clusters. As a workable method for large systems, we propose to replace those compact contributions with CCSD(T) energies and to sum up the remaining many-body contributions up to infinity with supermolecular or periodic RPA. As a demonstration of this approach, we show that for RPA(PBE0)+RSE it suffices to apply CCSD(T) to dimers and 30 compact, hydrogen-bonded trimers to get the methane–water cage interaction energy to within 1.6% of the reference value.
机译:分子团簇或固体能量的多体展开(MBE)提供了一种检测和分析理论方法错误的方法,如果只考虑系统的总能量,这些错误可能会被忽略。在这方面,甲烷分子与其封闭的十二面体水笼CH_(4)··(H_(2)O)20之间的相互作用是对近似方法的严格检验,包括密度泛函理论(DFT)近似。对于这个系统,混合和半局部DFT近似表现不稳定,三体和四体非加性项既没有正确的符号,也没有正确的大小。在这里,我们分析了不同MBE贡献中的这些定性错误在多大程度上传递给后Kohn–Sham随机相位近似(RPA),该近似使用近似Kohn–Sham轨道作为输入。结果揭示了DFT输入状态的质量与RPA结果之间的相关性。此外,重整化单体能量(RSE)修正在多体膨胀的所有阶次中都起着至关重要的作用。对于二聚体,RSE校正了每个测试的Kohn–Sham模型的RPA欠绑定:广义梯度近似(GGA)、meta-GGA、(meta-)GGA杂交,以及相关水平上的优化有效电势。值得注意的是,在RPA中加入单子还可以纠正三体和四体非加性能量的错误符号,并减轻对多体膨胀的过度高阶贡献。RPA误差主要由紧密团簇的贡献决定。作为一种适用于大系统的可行方法,我们建议用CCSD(T)能量代替这些紧凑贡献,并用超分子或周期RPA将剩余的多体贡献累加到无穷大。作为这种方法的证明,我们表明,对于RPA(PBE0)+RSE,将CCSD(T)应用于二聚体和30个紧凑的氢键三聚体足以使甲烷-水笼相互作用能在参考值的1.6%以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号