...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Water-Mediated Oxidation of Guanine by a Repair Enzyme: Simulation Using the ABEEM Polarizable Force Field
【24h】

Water-Mediated Oxidation of Guanine by a Repair Enzyme: Simulation Using the ABEEM Polarizable Force Field

机译:修复酶水介导的鸟嘌呤氧化:使用ABEEM极化力场模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The recognition mechanism of oxidative damage in organisms has long been a research hotspot. Water is an important medium in the recognition process, but its specific role remains unknown. There is a need to develop a suitable force field that can adequately describe the electrostatic, hydrogen bond, and other interactions among the molecules in the complex system of the repair enzyme and oxidized base. The developing ABEEM polarizable force field (PFF) has been used to simulate the repaired enzyme hOGG1 and oxidized DNA (PDB ID: 1EBM) in a biological environment, and the corresponding results are better than those of the fixed-charge force fields OPLS/AA and AMBER OL15. 8-Oxo-G is recognized by Gln315 of hOGG1 mainly through hydrogen bonds mediated by continuous exchange of 2 water molecules. Phe319 and Cys253 are stacked on both sides of the pi planes of bases to form sandwich structures. The charge polarization effect gives an important signal to drive the exchange of water molecules and maintains the recognition of oxidation bases by enzymes. The mediated main water molecule A and mediated auxiliary water molecule B together pull Gln315 to recognize 8-oxo-G by hydrogen bond interactions. Then, the charge polarization signal of solvent water molecule C with a large absolute charge causes the absolute charge of O atoms in water molecule A or B to increase by approximately 0.2 e, and water molecule A or B leaves Gln315 and 8-oxo-G. The other water molecule and water molecule C synergistically recognize 8-oxo-G with Gln315. Even though the water molecules between Gln315 and 8-oxo-G are removed, the MD simulation results show that water molecules appear between Gln315 and 8-oxo-G in a very short time (<2 ps). The dwell time of each water molecule is approximately 60 ps. The radial distribution function and dwell time support the correctness of the above mechanism. These polarization effects and hydrogen bonding interactions cannot be simulated by a fixed-charge force field.
机译:生物体内氧化损伤的识别机制一直是研究热点。水是识别过程中的重要介质,但其具体作用尚不清楚。需要开发一个合适的力场,以充分描述修复酶和氧化碱复杂系统中分子之间的静电、氢键和其他相互作用。发展中的ABEEM极化力场(PFF)已用于模拟生物环境中修复的酶hOGG1和氧化DNA(PDB ID:1EBM),其结果优于固定电荷力场OPLS/AA和琥珀色OL15。hOGG1的Gln315主要通过2个水分子的连续交换介导的氢键识别8-氧代-G。Phe319和Cys253堆叠在基座pi平面的两侧,形成三明治结构。电荷极化效应提供了一个重要的信号来驱动水分子的交换,并维持酶对氧化碱的识别。介导的主水分子A和介导的辅助水分子B共同拉动Gln315通过氢键相互作用识别8-氧代-G。然后,具有较大绝对电荷的溶剂水分子C的电荷极化信号使水分子a或B中O原子的绝对电荷增加约0.2E,水分子a或B离开Gln315和8-oxo-G。另一个水分子和水分子C协同识别8-oxo-G和Gln315。尽管Gln315和8-oxo-G之间的水分子被去除,但MD模拟结果表明,水分子在很短的时间内(<2 ps)出现在Gln315和8-oxo-G之间。每个水分子的停留时间约为60ps。径向分布函数和停留时间支持上述机制的正确性。这些极化效应和氢键相互作用不能用固定电荷力场来模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号