...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications
【24h】

Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications

机译:准确降低成本CCSD(T)能量:并行实现,基准和大型应用

获取原文
获取原文并翻译 | 示例
           

摘要

The accurate and systematically improvable frozen natural orbital (FNO) and natural auxiliary function (NAF) cost-reducing approaches are combined with our recent coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] implementations. Both of the closed- and open-shell FNO-CCSD(T) codes benefit from OpenMP parallelism, completely or partially integral-direct density-fitting algorithms, checkpointing, and hand-optimized, memory- and operation count effective implementations exploiting all permutational symmetries. The closed-shell CCSD(T) code requires negligible disk I/O and network bandwidth, is MPI/OpenMP parallel, and exhibits outstanding peak performance utilization of 50–70% up to hundreds of cores. Conservative FNO and NAF truncation thresholds benchmarked for challenging reaction, atomization, and ionization energies of both closed- and open-shell species are shown to maintain 1 kJ/mol accuracy against canonical CCSD(T) for systems of 31–43 atoms even with large basis sets. The cost reduction of up to an order of magnitude achieved extends the reach of FNO-CCSD(T) to systems of 50–75 atoms (up to 2124 atomic orbitals) with triple- and quadruple-ζ basis sets, which is unprecedented without local approximations. Consequently, a considerably larger portion of the chemical compound space can now be covered by the practically “gold standard” quality FNO-CCSD(T) method using affordable resources and about a week of wall time. Large-scale applications are presented for organocatalytic and transition-metal reactions as well as noncovalent interactions. Possible applications for benchmarking local CCSD(T) methods, as well as for the accuracy assessment or parametrization of less complete models, for example, density functional approximations or machine learning potentials, are also outlined.
机译:我们将精确且可系统改进的冻结自然轨道(FNO)和自然辅助函数(NAF)成本降低方法与我们最近的耦合团簇单粒子、双粒子和微扰三粒子[CCSD(T)]实现相结合。闭合和开放外壳FNO-CCSD(T)代码都得益于OpenMP并行、完全或部分积分直接密度拟合算法、检查点以及利用所有置换对称性的手动优化、内存和操作计数有效实现。闭式外壳CCSD(T)代码需要的磁盘I/O和网络带宽可以忽略不计,是MPI/OpenMP并行的,并且在多达数百个内核的情况下表现出50–70%的出色峰值性能利用率。保守的FNO和NAF截断阈值(以封闭壳层和开放壳层物种的挑战性反应、原子化和电离能为基准)表明,对于31–43个原子的系统,即使基组较大,与标准CCSD(T)相比,仍能保持1 kJ/mol的精度。实现了高达一个数量级的成本降低,将FNO-CCSD(T)的适用范围扩展到50–75个原子(多达2124个原子轨道)的系统,这些原子具有三重和四重ζ基集,这在没有局部近似的情况下是前所未有的。因此,化合物空间中相当大的一部分现在可以通过实际的“金标准”质量FNO-CCSD(T)方法覆盖,使用价格合理的资源和大约一周的墙壁时间。在有机催化和过渡金属反应以及非共价相互作用方面有着广泛的应用。本文还概述了对局部CCSD(T)方法进行基准测试的可能应用,以及对不完全模型(例如密度泛函近似或机器学习潜力)进行精度评估或参数化的可能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号