首页> 外文期刊>Journal of chemical theory and computation: JCTC >Multilevel Approaches within the Local Pair Natural Orbital Framework
【24h】

Multilevel Approaches within the Local Pair Natural Orbital Framework

机译:当地对自然轨道框架内的多级方法

获取原文
获取原文并翻译 | 示例
           

摘要

The linear-scaling local coupled cluster method DLPNO-CCSD(T) allows calculations on systems containing hundreds of atoms to be performed while reproducing canonical CCSD(T) energies typically with chemical accuracy (<1 kcal/mol). The accuracy of the method is determined by two main truncation thresholds that control the number of electron pairs included in the CCSD iterations and the size of the pair natural orbital virtual space for each electron pair, respectively. While the results of DLPNO-CCSD(T) calculations converge smoothly toward their canonical counterparts as the thresholds are tightened, the improved accuracy is accompanied by a fairly steep increase of the computational cost. Many applications study events that are confined to a relatively small region of the system of interest. Hence, it is viable to develop methods that allow the user to treat different parts of a large system at various levels of accuracy. In this work we present an extension to the native DLPNO method that fragments the system into preselected molecular parts and uses different thresholds or even different levels of theory for the interaction between individual fragments. Thereby chemical intuition can be used to focus computational resources on a more accurate evaluation of the properties at the center of interest, while permitting a less demanding description of the surrounding moieties. The strategy was implemented within the DLPNO-CCSD(T) framework. We tested the scheme for a series of realistic quantum chemical applications such as the calculation of the dimerization energies, potential energy surfaces, enantiomeric excess in organometallic catalysis, and the binding energy of the anticancer drug ellipticine to DNA. This work demonstrates the power of the approach and offers guidance to its setup.
机译:线性定标局部耦合团簇方法DLPNO-CCSD(T)允许对包含数百个原子的系统进行计算,同时再现典型的标准CCSD(T)能量,且具有化学精度(<1 kcal/mol)。该方法的精度由两个主要截断阈值决定,这两个阈值分别控制CCSD迭代中包含的电子对数量和每个电子对的对自然轨道虚拟空间的大小。虽然随着阈值的收紧,DLPNO-CCSD(T)计算的结果平稳地收敛到其标准对应值,但精度的提高伴随着计算成本的急剧增加。许多应用程序研究仅限于感兴趣系统中相对较小区域的事件。因此,开发允许用户以不同精度处理大型系统不同部分的方法是可行的。在这项工作中,我们提出了对原生DLPNO方法的扩展,该方法将系统分割成预选的分子部分,并使用不同的阈值,甚至不同的理论水平来研究单个片段之间的相互作用。因此,可以使用化学直觉将计算资源集中在对感兴趣的中心的性质进行更准确的评估上,同时允许对周围部分进行要求较低的描述。该战略在DLPNO-CCSD(T)框架内实施。我们测试了该方案的一系列实际量子化学应用,如计算二聚能、势能面、有机金属催化中的对映体过量,以及抗癌药物ellipticine与DNA的结合能。这项工作展示了该方法的威力,并为其设置提供了指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号