首页> 外文期刊>Wood and Fiber Science >CRADLE-TO-GRAVE LIFE CYCLE ASSESSMENT OF SYNGAS ELECTRICITY FROM WOODY BIOMASS RESIDUES
【24h】

CRADLE-TO-GRAVE LIFE CYCLE ASSESSMENT OF SYNGAS ELECTRICITY FROM WOODY BIOMASS RESIDUES

机译:木质生物质残留物的摇篮 - 严重生命周期评估合成气电力

获取原文
获取原文并翻译 | 示例
       

摘要

Forest restoration and fire suppression activities in the western United States have resulted in large volumes of low-to-no-value residues. An environmental assessment would enable greater use while maintaining environmental sustainability of these residues for energy products. One internationally accepted sustainable metric tool that can assess environmental impacts of new bioenergy conversion systems is the life cycle assessment (LCA). Using the LCA method, this study evaluated the synthesis gas (syngas) electricity produced via a distributed-scale biomass thermochemical conversion system called the Tucker renewable natural gas (RNG) system. This system converts woody biomass in a high-temperature and extremely low-oxygen environment to a medium-energy syngas that is burned to generate electricity. The system also produced biochar as a by-product and tar as a waste. Results from the life cycle impact assessment included an estimate of the global warming (GW) impact from the cradle-to-grave production of syngas for electricity. When the carbon sequestration effect from the biochar by-product was included, GW impact value (0.330 kg CO2-eq/kWh) was notably lower compared with electricity generated from bituminous coal (1.079 kg CO2-eq/kWh) and conventional natural gas (0.720 kg CO2-eq/kWh). Other environmental impacts showed that syngas electricity ranged between the direct-biomass-burned electricity and fossil-fuel-combusted electricity for different impact categories. This occurred because, although the woody biomass feedstock was from a renewable resource with less environmental impact, propane was consumed during the thermochemical conversion. Specifically, the evaluation showed that the highest greenhouse gas (GHG) emissions contribution came from burning propane that was used to maintain the endothermic reaction in the Tucker RNG unit. If the tar waste from the system were converted into a low-energy syngas and used to supplement propane consumption, a further decrease of 41% in GHG emissions (ie fossil CO2) could be achieved in this cradle-to-grave assessment.
机译:美国西部的森林恢复和灭火活动导致大量低价值或无价值残留物。环境评估将使能源产品在保持这些残留物的环境可持续性的同时,得到更多的利用。生命周期评估(LCA)是一种国际公认的可持续度量工具,可以评估新生物能源转换系统的环境影响。利用生命周期评价方法,本研究评估了通过分布式生物质热化学转化系统塔克可再生天然气(RNG)系统产生的合成气(合成气)电能。该系统将木质生物质在高温和极低氧气环境中转化为中能合成气,然后燃烧发电。该系统还产生生物炭作为副产品,焦油作为废物。生命周期影响评估的结果包括对从摇篮到坟墓生产电力用合成气的全球变暖(GW)影响的估计。如果将生物炭副产品的固碳效应包括在内,与烟煤(1.079 kg CO2 eq/kWh)和传统天然气(0.720 kg CO2 eq/kWh)发电相比,GW影响值(0.330 kg CO2 eq/kWh)显著更低。其他环境影响表明,对于不同的影响类别,合成气发电介于直接生物质燃烧发电和化石燃料燃烧发电之间。这是因为,尽管木质生物质原料来自对环境影响较小的可再生资源,但在热化学转化过程中消耗了丙烷。具体而言,评估表明,最大的温室气体(GHG)排放贡献来自燃烧丙烷,用于维持塔克RNG装置中的吸热反应。如果将来自该系统的焦油废物转化为低能合成气,并用于补充丙烷消耗量,则在这项从摇篮到坟墓的评估中,温室气体排放量(即化石二氧化碳)可进一步减少41%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号