【24h】

Protein folding by NMR

机译:用NMR折叠蛋白质

获取原文
获取原文并翻译 | 示例
           

摘要

Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co-and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease. (C) 2016 Elsevier B. V. All rights reserved.
机译:蛋白质折叠是一个高度复杂的过程,通过许多无序和部分折叠的非天然状态进行,具有不同程度的结构组织。在蛋白质折叠能量景观中,这些短暂且稀少的物种在推动折叠向天然构象方向发展方面发挥着关键作用,但其中一些非天然状态也可能成为蛋白质错误折叠和聚集的前兆,与一系列毁灭性疾病相关,包括神经退行性变、糖尿病和癌症。因此,体内蛋白质折叠通常通过与核糖体、分子伴侣和/或其他细胞成分的相互作用,在共翻译和翻译后重塑。由于仪器和方法学的发展,溶液核磁共振波谱已成为在体外和体内详细描述复杂蛋白质折叠过程的中心实验方法。核磁共振弛豫分散和饱和转移方法提供了一种手段,可以详细描述类天然条件下的蛋白质折叠动力学和热力学,以及在蛋白质折叠能量图上模拟弱填充短命构象状态的高分辨率结构。同位素标记策略和核磁共振方法的不断发展,以及细胞内核磁共振的进展,使得蛋白质折叠可以在核糖体新生链复合物和分子伴侣的背景下进行研究,甚至在活细胞内进行研究。在这里,我们回顾了研究蛋白质折叠能量景观的溶液核磁共振方法,并讨论了核磁共振方法在体外和体内研究蛋白质折叠中的应用。综上所述,这些例子突出了溶液核磁共振在为健康和疾病中蛋白质折叠和内稳态的分子机制提供原子论见解方面的巨大潜力。(C) 2016爱思唯尔有限公司版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号