首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Laser powder bed fusion additive manufacturing, microstructure evolution, and mechanical performance of carbon nanotube-decorated titanium alloy powders
【24h】

Laser powder bed fusion additive manufacturing, microstructure evolution, and mechanical performance of carbon nanotube-decorated titanium alloy powders

机译:激光粉末融合添加剂制造,微观结构演化,以及碳纳米管装饰钛合金粉末的机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

Novel TiC-reinforced titanium matrix composites (TMCs) were in situ synthesized by laser powder bed fusion (LPBF) of unique carbon nanotube (CNT)-decorated Ti-6Al-4V powders. Acid-treated CNTs were coated on the surface of Ti-6Al-4V particles by electrostatic self-assembly without varying the powder sphericity, leading to improved printability, as proved by laser-absorption and single-track experiments. During L-PBF, the CNTs were completely transformed into monocrystalline TiC dispersed in the alpha'-Ti matrix via a dissolution/precipitation mechanism. As illustrated by high-resolution transmission electron microscopy, the in situ-synthesized TiC crystals were closely bonded to the matrix, exhibiting typical TiC [001]//Ti [00-1] and TiC (220)//Ti (-100) orientation relationships. Significantly, the morphology of TiC underwent an interesting evolution from nanorods to micro-spheres, and to dendrites with an increase in the CNT content, causing a gradual increase in hardness of TMCs. This study may provide insights into the design of high-performance TMCs with unique microstructures, excellent properties, and tailored architectures. (C) 2020 Elsevier B.V. All rights reserved.
机译:采用独特的碳纳米管(CNT)修饰Ti-6Al-4V粉末,通过激光粉末床熔合(LPBF)原位合成了新型TiC增强钛基复合材料(TMC)。激光吸收和单轨实验证明,酸处理后的碳纳米管通过静电自组装在Ti-6Al-4V颗粒表面,而不改变粉末的球形度,从而改善了印刷适性。在L-PBF过程中,碳纳米管通过溶解/沉淀机制完全转变为分散在α'-Ti基体中的单晶TiC。如高分辨率透射电子显微镜所示,原位合成的TiC晶体与基体紧密结合,表现出典型的TiC[001]//Ti[00-1]和TiC(220)//Ti(-100)取向关系。值得注意的是,随着CNT含量的增加,TiC的形貌经历了有趣的演变,从纳米棒到微球,再到树枝晶,从而导致TMC的硬度逐渐增加。这项研究可能为设计具有独特微结构、优异性能和定制架构的高性能TMC提供见解。(C) 2020爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号