...
首页> 外文期刊>Laser physics letters >Shortcuts to adiabatic passage for the generation of a maximal Bell state and W state in an atom-cavity system
【24h】

Shortcuts to adiabatic passage for the generation of a maximal Bell state and W state in an atom-cavity system

机译:在原子腔系统中产生最大钟态和W状态的绝热通道的捷径

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient scheme to generate the maximal entangle states in an atom-cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号