...
首页> 外文期刊>Neurobiology of learning and memory >Inactivation of the striatum in aged rats rescues their ability to learn a hippocampus-sensitive spatial navigation task
【24h】

Inactivation of the striatum in aged rats rescues their ability to learn a hippocampus-sensitive spatial navigation task

机译:老年大鼠中纹状体的失活救出了学习海马敏感空间导航任务的能力

获取原文
获取原文并翻译 | 示例
           

摘要

Studies of age-related changes in learning and memory often focus on hippocampus-sensitive tasks and reveal age-associated impairments across numerous species and contexts. However, cognitive decline with advanced age is not all-encompassing; for example, forms of striatum-sensitive learning are conserved or enhanced with age. Under certain conditions, hippocampal and striatal memory systems function in opposition. In young adult rodents, disruption of one structure can enhance learning on tasks dependent on the other, suggesting that competitive interactions across memory systems contribute to learning and memory abilities. This report examines whether imbalances across memory systems might contribute to cognitive aging. We inactivated the striatum using central infusions of lidocaine (sodium channel blocker) prior to hippocampus-sensitive spatial (place) training in young (3-4-month-old) and old (24-25-month-old) F344 male rats. Consistent with prior work, vehicle-infused old rats exhibited place learning impairments relative to young rats. Additionally, striatal inactivation enhanced learning in old rats, but not young rats, abolishing the age-related impairment. These findings suggest that age-related declines in learning tasks thought to engage the hippocampus may stem from exaggerated interference from other memory systems and that interventions to target the striatum may reverse some age-related learning decrements.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号