...
首页> 外文期刊>Measurement >Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding
【24h】

Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding

机译:基于海洋捕食者算法的滚动轴承的故障诊断支持向量机和拓扑学习和拓扑嵌入

获取原文
获取原文并翻译 | 示例

摘要

The long-term safe operation of rotating machinery is closely related to the stability of rolling bearings. This paper proposes a rolling bearing fault diagnosis method based on refined composite multiscale fuzzy entropy (RCMFE), topology learning and out-of-sample embedding (TLOE), and the marine predators algorithm basedsupport vector machine (MPA-SVM). First, the RCMFE algorithm is used to extract the features of the original rolling bearing fault signal and to construct the original high-dimensional fault feature set. Then, TLOE is used to reduce the dimensionality of the high-dimensional fault feature set. The low-dimensional sensitive fault features are extracted to construct a low-dimensional fault feature subset. Finally, fault-type discrimination is performed using the MPA-SVM. The Case Western Reserve University dataset and data from fault diagnosis experiments performed on 1210 self-aligning ball bearings were used to verify the proposed method. The results demonstrate the effectiveness of the fault diagnosis method, which can diagnose bearing faults with up to 100% accuracy.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号