...
首页> 外文期刊>Macromolecular Research >Preparation of High-Performance Polyethersulfone/Cellulose Nanocrystal Nanocomposite Fibers via Dry-Jet Wet Spinning
【24h】

Preparation of High-Performance Polyethersulfone/Cellulose Nanocrystal Nanocomposite Fibers via Dry-Jet Wet Spinning

机译:通过干式湿法纺丝制备高效聚醚砜/纤维素纳米晶纳米复合纤维

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Polyethersulfone (PES) and PES/cellulose nanocrystal (CNC) nanocomposite fibers were prepared via dry-jet wet spinning at the filler loading of 1 and 2 wt%. Prior to the spinning, the optimal dispersion time of CNC in N, N-dimethylacetamide was investigated based on the dynamic light scattering. Upon the bath-type sonication, the hydrodynamic diameter (Dh) of CNCs was reduced sharply from 1281 to 37.8 nm up to the dispersion time of 48 h, indicating the well-dispersed nature of the individual CNC molecules. After 48 h, the Dh of CNC plateaued in the range of 28.2-43.8 nm, and therefore, the optimal sonication time was set to 48 h. The tensile properties of dry-jet wet-spun PES fibers were significantly affected by the post-drawing temperature. Over the range of 80-120 degrees C, the 100 degrees C-drawing resulted in the highest tensile properties of the fibers. At a total draw ratio of 8, the control PES fibers exhibited the tensile strength of 230 MPa, modulus of 4.0 GPa, and toughness of 36.4 J/g, while PES/CNC1 fibers showed 240 MPa, 4.7 GPa, and 51.8 J/g, respectively. On the contrary, the incorporation of 2 wt% CNC led to diminished tensile properties due to the inhomogeneity of the spinning dope as confirmed by the rheological analysis.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号