首页> 外文期刊>Fullerenes, nanotubes, and carbon nanostructures >Growth and characterization of carbon nanotubes over CoFe2O4-MgO catalysts at different temperatures
【24h】

Growth and characterization of carbon nanotubes over CoFe2O4-MgO catalysts at different temperatures

机译:不同温度下CoFe2O4-MgO催化剂的碳纳米管的生长和表征

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A novel approach for synthesizing carbon nanotubes (CNTs) via chemical vapor deposition (CVD) technique has been elucidated. CNTs are catalytically grown on the CoFe2O4-MgO nano-catalyst at various growth temperatures (700 degrees C, 800 degrees C, 900 degrees C) to clarify the effect of temperature and to achieve the optimum CNT growth temperature. The structural properties of the catalyst and CNTs were studied with thermal analysis (TGA), X-ray diffraction (XRD), FTIR spectroscopy (IR), Raman spectroscopy, and High Resolution Transmission Electron Microscope (HRTEM). X-ray diffraction is used to study changes in the crystal structure of the CoFe2O4+MgO nano-catalyst. The obtained data ratifies the formation of MWCNTs over the nanocatalyst. The intensity of the main peak of CNTs decreases as well as the yield with increasing the growth temperature. The two main Raman modes, G band and the D band, can be identified in the spectra multi-walled carbon nanotubes .The lowest I-D/I-G ratio is obtained at the highest growth temperature. HRTEM images show that the growth temperature has a significant parameter on CNT quality. The average diameters of grown CNTs are 42, 32 and 16 nm for growth temperatures of 700 & x30a;C, 800 & x30a;C and 900 & x30a;C, respectively. The inner and outer diameters of MWCNTs become thinner and the quality of the tubes is enhanced with increasing the growth temperature. Additionally, it can be concluded from the temperature study that the balance between decomposition of acetylene gas and diffusion rate of manufactured carbon atoms in CoFe2O4-MgO catalyst nanoparticles occurs at the optimal growth temperature of 900 degrees C.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号