首页> 外文期刊>Friction >Influence of molecular weight of modified ultrahigh-molecularweight polyethylene with Cu(II) chelate of bissalicylaldehydeethylenediamine on wear-resistant materials
【24h】

Influence of molecular weight of modified ultrahigh-molecularweight polyethylene with Cu(II) chelate of bissalicylaldehydeethylenediamine on wear-resistant materials

机译:改性超高分子量聚乙烯分子量对耐磨材料铜醛乙二胺螯合物的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Reciprocating friction and wear performances of pure ultrahigh-molecular-weight polyethylenes (UHMWPEs) with molecular weights (MWs) of 2, 3, 5, and 9 million and their modified UHMWPEs with 15 wt.% Cu(II) chelate of bissalicylaldehyde-ethylenediamine (add1) against titanium alloy (Ti6Al4V) were investigated under boundary lubrication with 25 vol.% calf serum deionized water solution. Differential scanning calorimetry (DSC) of purchased UHMWPE powders was performed. The enthalpy changed with an increase in MW. UH300 had the lowest temperature of an extrapolated peak and the best peak symmetry in DSC analysis. The friction coefficient curves of molded pure and modified UHMWPEs/Ti6Al4V were compared, and the volume loss by the wear of polymers was measured. 3D topographies of the worn surfaces of polymers and images of the worn surfaces of polymers and titanium alloy against polymers were analyzed by confocal white light microscopy and scanning electron microscopy, respectively. Results showed that the influence of MW of UHMWPE was obvious on the friction and wear characteristics of pure UHMWPEs and 15% add1 UHMWPEs. An MW of 3 million was the best to reduce the friction of rubbing pairs, enhance the wear resistance of pure UHMWPEs and 15% add1-UHMWPEs, and improve the mating properties of Ti6Al4V.
机译:None

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号