...
首页> 外文期刊>Global change biology >Precipitation-productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change
【24h】

Precipitation-productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change

机译:降水生产率关系和降水异常持续时间:气候变化的低估维度

获取原文
获取原文并翻译 | 示例

摘要

In terrestrial ecosystems, climate change forecasts of increased frequencies and magnitudes of wet and dry precipitation anomalies are expected to shift precipitation-net primary productivity (PPT-NPP) relationships from linear to nonlinear. Less understood, however, is how future changes in the duration of PPT anomalies will alter PPT-NPP relationships. A review of the literature shows strong potential for the duration of wet and dry PPT anomalies to impact NPP and to interact with the magnitude of anomalies. Within semi-arid and mesic grassland ecosystems, PPT gradient experiments indicate that short-duration (1 year) PPT anomalies are often insufficient to drive nonlinear aboveground NPP responses. But long-term studies, within desert to forest ecosystems, demonstrate how multi-year PPT anomalies may result in increasing impacts on NPP through time, and thus alter PPT-NPP relationships. We present a conceptual model detailing how NPP responses to PPT anomalies may amplify with the duration of an event, how responses may vary in xeric vs. mesic ecosystems, and how these differences are most likely due to demographic mechanisms. Experiments that can unravel the independent and interactive impacts of the magnitude and duration of wet and dry PPT anomalies are needed, with multi-site long-term PPT gradient experiments particularly well-suited for this task.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号