...
首页> 外文期刊>European Journal of Soil Science >Organic carbon pools and organic matter chemical composition in response to different land uses in southern Brazil
【24h】

Organic carbon pools and organic matter chemical composition in response to different land uses in southern Brazil

机译:有机碳库和有机物质化学成分响应巴西南部的不同土地使用

获取原文
获取原文并翻译 | 示例

摘要

The adoption of conservation agriculture (e.g., no-till system) has been recognized as pivotal to maintaining soil functions, but the potential of this system to enhance organic carbon (OC) quantity and quality and how this OC is stabilized in soils are not well established. In this study, we evaluated the effects of land-use types (native vegetation (NV) vs. no-till system (NT)) on OC stocks and on the chemical composition of organic matter (OM), and sought to understand the mechanisms that govern OC protection in the studied highly weathered soils. To achieve these objectives, we used an OC fractionation scheme in a combination of solid-state C-13 nuclear magnetic resonance (NMR) spectroscopic analyses in soils from six farms in southern Brazil. Our results showed smaller OC stocks (whole soil) under NT than under NV in four of the six sites. In addition, the OC stock differences between land-use types were larger in coarser textured soils and in those where conventional tillage was used before the adoption of NT. Among fractions, particulate organic carbon (POC) represented only 8% of the whole OC stock but was the fraction most affected by land-use type. In contrast, the humus organic carbon (HOC) fraction contributed 78% of the whole OC stock and was little altered by land-use type. Resistant organic carbon (ROC) represented 14% of the whole OC stock and it was altered by land-use type, demonstrating that this fraction is not as inert as previously thought. Overall, OM chemical composition was quite similar between land uses, with O-alkyl-C being the predominant C type. This labile component was further highly correlated with OC stock and silt + clay contents, indicating that the accumulation of OC in these highly weathered soils is mainly a response to the association between labile C compounds and minerals.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号