...
首页> 外文期刊>European Journal of Soil Science >Development and functional evaluation of pedotransfer functions for soil hydraulic properties for the Zambezi River Basin
【24h】

Development and functional evaluation of pedotransfer functions for soil hydraulic properties for the Zambezi River Basin

机译:Zambezi River盆地土壤液压特性网站传输功能的开发与功能评价

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Water retention and saturated hydraulic conductivity are soil properties that are key determinants in crop growth and hydrological modelling. They are commonly estimated from basic soil characteristics such as bulk density, organic carbon content and texture by means of pedotransfer functions (PTFs). In order to assess and compare the inherent performance and the functional applicability in the Zambezi River Basin (ZRB) of the widely used Saxton & Rawls PTFs and a set of newly developed PTFs, we compiled measurements of water retention at pF0.0, 1.0, 2.0, 2.8, 3.4 and 4.2 and of saturated hydraulic conductivity (Ksat) on 631 soil samples throughout the ZRB. A total of 329 of the samples were related to 55 soil profiles available in the Africa Soil Profile database, whereas our own field campaign carried out in a 2,426-km(2) subbasin of the ZRB provided the remaining 302 samples related to 119 soil profiles. Apart from evaluating the Saxton & Rawls PTFs, we developed multiple linear regression (MLR) PTFs, and PTFs derived by three machine learning (ML) models: artificial neural network (ANN), random forest (RF) and support vector machine (SVM). All PTFs were first evaluated based on a comparison of the estimated and measured property values by means of R-2, mean absolute error (MAE) and root mean squared error (RMSE). For the ensemble of MLR-PTF and ML-PTFs, the R-2 of the six water content variables and the Ksat ranged from 0.55 to 0.85, whereas for the Saxton & Rawls PTFs the range was between 0.10 and 0.50. Secondly, all PTFs were subjected to a functional evaluation using the Food and Agriculture Organization (FAO) AquaCrop crop growth model. Dry season irrigation requirements for maize as computed by AquaCrop with measured versus estimated soil hydraulic properties revealed that ANN-PTFs provide AquaCrop outputs that come closest to AquaCrop outputs generated with measured soil hydraulic properties. This study shows the importance of performing functional evaluation of pedotransfer functions before their widespread application.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号