...
首页> 外文期刊>Earth Surface Processes and Landforms: The journal of the British Geomorphological Research Group >Morphology and evolution of supraglacial hummocks on debris-covered Himalayan glaciers
【24h】

Morphology and evolution of supraglacial hummocks on debris-covered Himalayan glaciers

机译:碎片覆盖喜马拉雅冰川超透明艇的形态与演变

获取原文
获取原文并翻译 | 示例

摘要

Thick supraglacial debris layers often have an undulating, hummocky topography that influences the lateral transport of debris and meltwater and provides basins for supraglacial ponds. The role of ablation and other processes associated with supraglacial debris in giving rise to this hummocky topography is poorly understood. Characterizing hummocky topography is a first step towards understanding the feedbacks driving the evolution of debris-covered glacier surfaces and their potential impacts on mass balance, hydrology and glacier dynamics. Here we undertake a geomorphological assessment of the hummocky topography on five debris-covered glaciers in the Everest region of the central Himalaya. We characterize supraglacial hummocks through statistical analyses of their vertical relief and horizontal geometry. Our results establish supraglacial hummocks as a distinct landform. We find that a typical hummock has an elongation ratio of 1.1:1 in the direction of ice flow, length of 214 +/- 109 m and width of 192 +/- 88 m. Hummocky topography has a greater amplitude across-glacier (15.4 +/- 10.9 m) compared to along the glacier flow line (12.6 +/- 8.3 m). Consequently, hummock slopes are steeper in the across-glacier direction (8.7 +/- 4.3 degrees) than in the direction of ice flow (5.6 +/- 4.0 degrees). Longer, wider and higher-amplitude hummocks are found on larger glaciers. We postulate that directional anisotropy in the hummock topography arises because, while the pattern of differential ablation driving topography evolution is moderated by processes including the gravitational redistribution of debris across the glacier surface, it also inherits an orientation preference from the distribution of englacial debris in the underlying ice. Our morphometric data inform future efforts to model these interactions, which should account for additional factors such as the genesis of supraglacial ponds and ice cliffs and their impact on differential ablation.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号