...
首页> 外文期刊>Ecological Monographs: Official Publication of the Ecological Society of America >Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change
【24h】

Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change

机译:哈佛森林的碳预算长期生态研究现场:模式,过程和对全球变革的反应

获取原文
获取原文并翻译 | 示例
           

摘要

How, where, and why carbon (C) moves into and out of an ecosystem through time are long-standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C-cycle observations at the Harvard Forest in central Massachusetts, USA, a mid-latitude landscape dominated by 80-120-yr-old closed-canopy forests. These data answered four questions: (1) where and how much C is presently stored in dominant forest types; (2) what are current rates of C accrual and loss; (3) what biotic and abiotic factors contribute to variability in these rates; and (4) how has climate change affected the forest's C cycle? Harvard Forest is an active C sink resulting from forest regrowth following land abandonment. Soil and tree biomass comprise nearly equal portions of existing C stocks. Net primary production (NPP) averaged 680-750 g C.m(-2).yr(-1); belowground NPP contributed 38-47% of the total, but with large uncertainty. Mineral soil C measured in the same inventory plots in 1992 and 2013 was too heterogeneous to detect change in soil-C pools; however, radiocarbon data suggest a small but persistent sink of 10-30 g C.m(-2).yr(-1). Net ecosystem production (NEP) in hardwood stands averaged similar to 300 g C.m(-2).yr(-1). NEP in hemlock-dominated forests averaged similar to 450 g C.m(-2).yr(-1) until infestation by the hemlock woolly adelgid turned these stands into a net C source. Since 2000, NPP has increased by 26%. For the period 1992-2015, NEP increased 93%. The increase in mean annual temperature and growing season length alone accounted for similar to 30% of the increase in productivity. Interannual variations in GPP and NEP were also correlated with increases in red oak biomass, forest leaf area, and canopy-scale light-use efficiency. Compared to long-term global change experiments at the Harvard Forest, the C sink in regrowing biomass equaled or exceeded C cycle modifications imposed by soil warming, N saturation, and hemlock removal. Results of this synthesis and comparison to simulation models suggest that forests across the region are likely to accrue C for decades to come but may be disrupted if the frequency or severity of biotic and abiotic disturbances increases.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号