首页> 外文期刊>International Journal of Fracture >Dynamic fracture in a semicrystalline biobased polymer: an analysis of the fracture surface
【24h】

Dynamic fracture in a semicrystalline biobased polymer: an analysis of the fracture surface

机译:半结晶生物化聚合物中的动态骨折:裂缝表面的分析

获取原文
获取原文并翻译 | 示例
           

摘要

The fracture behaviour of a semi-crystalline bio-based polymer was studied. Dynamic fracture tests on strip band specimens were carried out. Fracture surfaces were observed at different scales by optical and electron microscopy to describe cracking scenarios. Crack initiation, propagation and arrest zones were described. Three distinct zones are highlighted in the initiation and propagation zone: a zone with conical markings, a mist zone and a hackle zone. The conical mark zone shows a variation in the size and density of the conical marks along the propagation path. This is synonymous with local speed variation. Microcracks at the origin of the conical marks in the initiation zone seem to develop from the nucleus of the spherulites. In the propagation zone with complex roughness, the direction of the microcracks and their cracking planes are highly variable. Their propagation directions are disturbed by the heterogeneities of the material. They branch or bifurcate at the level of the spherulites. In the arrest zone, the microcracks developed upstream continue to propagate in different directions. The surface created is increasingly smoother as the energy release rate decreases. It is shown that the local velocity of the crack varies in contrast to the macroscopic speed. A specific setup allowing to estimate the minimum fracture energy of the material in order to maintain the rapid propagation of the crack is proposed for materials with antagonistic behaviour: ductile at initiation and brittle in propagation.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号