首页> 外文期刊>Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases >Mice immunization with Trypanosoma brucei gambiense translationally controlled tumor protein modulates immunoglobulin and cytokine production, as well as parasitaemia and mice survival after challenge with the parasite
【24h】

Mice immunization with Trypanosoma brucei gambiense translationally controlled tumor protein modulates immunoglobulin and cytokine production, as well as parasitaemia and mice survival after challenge with the parasite

机译:用胰蛋白酶瘤的小鼠免疫直播性控制肿瘤蛋白调节免疫球蛋白和细胞因子的生产,以及寄生虫攻击后的寄生虫和小鼠生存

获取原文
获取原文并翻译 | 示例
       

摘要

Fighting trypanosomiasis with an anti-trypanosome vaccine is ineffective, the parasite being protected by a Variable Surface Glycoprotein (VSG) whose structure is modified at each peak of parasitaemia, which allows it to escape the host's immune defenses. However, the host immunization against an essential factor for the survival of the parasite or the expression of its pathogenicity could achieve the same objective. Here we present the results of mouse immunization against the Translationally Controlled Tumor Protein (TCTP), a protein present in the Trypanosoma brucei gambiense (Tbg) secretome, the parasite responsible for human trypanosomiasis. Mice immunization was followed by infection with Tbg parasites. The production of IgG, IgG1 and IgG2a begun after the second TCTP injection and was dose-dependant, the maximum level of anti-TCTP antibodies remained stable up to 4 days post-infection and then decreased. Regarding cytokines (IL-2, 4, 6, 10, INF gamma, TNF alpha), the most striking result was their total suppression after immunization with the highest TCTP dose. Compared to the control group, the immunized mice displayed a reduced first peak of parasitaemia, a 100% increase in the time to onset of the second peak, and an increased time of mice survival. The effect of immunization was only transient but demonstrated the likely important role that TCTP plays in host-parasite interactions and that some key parasite proteins could reduce infection impact.
机译:None

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号