首页> 外文期刊>Astronomy and Computing >A 3D radiative transfer framework: XII. Many-core, vector and GPU methods
【24h】

A 3D radiative transfer framework: XII. Many-core, vector and GPU methods

机译:3D辐射转移框架:XII。 许多核心,矢量和GPU方法

获取原文
获取原文并翻译 | 示例
           

摘要

3D detailed radiative transfer is computationally taxing, since the solution of the radiative transfer equation involves traversing the six dimensional phase space of the 3D domain. With modern supercomputers the hardware available for wallclock speedup is rapidly changing, mostly in response to requirements to minimize the cost of electrical power. Given the variety of modern computing architectures, we aim to develop and adapt algorithms for different computing architectures to improve performance on a wide variety of platforms. We implemented the main time consuming kernels for solving 3D radiative transfer problems for vastly different computing architectures using MPI, OpenMP, OpenACC and vector algorithms. Adapted algorithms lead to massively improved speed for all architectures, making extremely large model calculations easily feasible. These calculations would have previously been considered impossible or prohibitively expensive. Efficient use of modern computing devices is entirely feasible, but unfortunately requires the implementation of specialized algorithms for them. (C) 2021 Elsevier B.V. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号