...
首页> 外文期刊>Archives of Toxicology >Infer the in vivo point of departure with ToxCast in vitro assay data using a robust learning approach
【24h】

Infer the in vivo point of departure with ToxCast in vitro assay data using a robust learning approach

机译:使用强大的学习方法推断使用Toxcast的体外测定数据的体内偏离点

获取原文
获取原文并翻译 | 示例

摘要

The development and application of high throughput in vitro assays is an important development for risk assessment in the twenty-first century. However, there are still significant challenges to incorporate in vitro assays into routine toxicity testing practices. In this paper, a robust learning approach was developed to infer the in vivo point of departure (POD) with in vitro assay data from ToxCast and Tox21 projects. Assay data from ToxCast and Tox21 projects were utilized to derive the in vitro PODs for several hundred chemicals. These were combined with in vivo PODs from ToxRefDB regarding the rat and mouse liver to build a high-dimensional robust regression model. This approach separates the chemicals into a majority, well-predicted set; and a minority, outlier set. Salient relationships can then be learned from the data. For both mouse and rat liver PODs, over 93% of chemicals have inferred values from in vitro PODs that are within ±?1 of the in vivo PODs on the log~(10)scale (the target learning region, or TLR) and R _(2)of 0.80 (rats) and 0.78 (mice) for these chemicals. This is comparable with extrapolation between related species (mouse and rat), which has 93% chemicals within the TLR and the R _(2)being 0.78. Chemicals in the outlier set tend to also have more biologically variable characteristics. With the continued accumulation of high throughput data for a wide range of chemicals, predictive modeling can provide a valuable complement for adverse outcome pathway?based approach in risk assessment.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号