首页> 外文期刊>Analytical Letters >Determination of Arsenic by Hydride GenerationLaser-Induced Breakdown Spectroscopy: Characterization of Interelement Interferences
【24h】

Determination of Arsenic by Hydride GenerationLaser-Induced Breakdown Spectroscopy: Characterization of Interelement Interferences

机译:氢化物生成激发器诱导的击穿光谱法测定砷:时钟干扰特征

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this study, interelement interferences were evaluated for the determination of arsenic in aqueous samples through laser-induced breakdown spectroscopy (LIBS) hyphenated with a hydride generation sample introduction system. Optimum instrumental and chemical parameters were selected and variation in LIBS signal intensity was recorded for As solution in the presence of comparable concentrations of interfering elements. No significant change in the signal intensity of As(I) 228.8nm line was observed in the presence of alkali/alkali earth metals; however, the presence of hydride-forming elements has shown a noticeable decrease in the line emission strength of arsenic. The least variation in arsenic signal was observed in the presence of Ge, the most volatile of all. However, the signal has decreased to a greater extent in the presence of Sn, Sb, and Pb. The presence of interfering elements on electron temperature and electron number density of arsenic plasma has also been studied. Plasma temperatures calculated using both As and Ar emission lines in the Boltzmann equation were similar, being around 5000K. The McWhirter criterion for stationary and homogenous plasmas was utilized for the establishment of the local thermodynamic equilibrium under the plasma conditions studied. Applicability of the technique for multielemental analysis of water samples was tested through spiking experiments. Arsenic signal showed 26% decrease in the multielemental mixture solution. LIBS is among a few atomic spectroscopic techniques that facilitate rapid and simultaneous multielemental analysis without extensive sample preparation steps. However, the analytical performance of the technique still requires more serious efforts to compete with other conventional techniques for routine analysis of environmental samples.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号