...
首页> 外文期刊>Agricultural Water Management >Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization
【24h】

Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization

机译:从地面盖和高度分数预测作物系数:蔬菜,田间作物的实际应用,重点是参数化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The A&P approach, developed by Allen and Pereira (2009), estimates single and basal crop coefficients (Kc and Kcb) from the observed fraction of ground cover (fc) and crop height (h). The practical application of the A&P for several crops was reviewed and tested in a companion paper (Pereira et al., 2020). The current study further addresses the derivation of optimal values for A&P parameter values representing canopy transparency (ML) and stomatal adjustment (Fr), and tests the resulting model performance. Values reported in literature of ML and Fr were analysed. Optimal ML and Fr values were derived by a numerical search that minimized the differences between Kcb A&P with standard Kcb for vegetable, field, and fruit crops as tabulated by Pereira et al. (2021a, 2021b) and Rallo et al. (2021). Sources for fc were literature reviews supplemented by a remote sensing survey. Computed Kcb and Kc for mid- and end-season together with associated parameters values were tabulated. To improve the usability of the ML and Fr parameters a cross validation was performed, which consisted of the linear regression between Kcb computed by A&P and observed Kcb relative to independent data sets obtained from field observations. Results show that both series of Kcb match well, with regression coefficients very close to 1.0, coefficients of determination near 1.0, and root mean square errors (RMSE) of 0.06 for the annual crops and RMSE = 0.07 for the trees and vines. These errors represent less than 10% of most of the computed tabulated Kcb. The tabulated Fr and ML of this paper can be regarded as defaults to support A&P field practice when observations of fc and h are performed. Therefore, the A&P approach shows to be appropriate for use in irrigation scheduling and planning when fc and h are observed using ground and/or remote sensing, hence supporting irrigation water savings.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号