首页> 外文期刊>AAPG Bulletin >Predicting unconventional reservoir potential from wire-line logs: A correlation between compositional and geomechanical properties of the Duvernay shale play of western Alberta, Canada
【24h】

Predicting unconventional reservoir potential from wire-line logs: A correlation between compositional and geomechanical properties of the Duvernay shale play of western Alberta, Canada

机译:预测线线日志的非传统储层潜力:加拿大西艾伯塔西部杜甫页岩演奏的成分和地质力学性质的相关性

获取原文
获取原文并翻译 | 示例
           

摘要

Unconventional reservoir performance is assessed and quantified via integration of compositional, rock fabric, and static mechanical property analyses that are routinely performed on drill core or cuttings. This approach has several limitations; for example, it can only be used where drill core and cuttings are available, and comprehensive analysis may be cost prohibitive at the full scale of a resource play. In this contribution, we propose a novel workflow that provides a robust correlation between compositional, mineralogical, and geomechanical properties of unconventional shale plays and wire-line log signature. Our approach enables the extrapolation of compositional and mechanical reservoir properties into areas in which drill core is lacking but wire-line logs are available. We illustrate our workflow using a case study from the Duvernay unconventional shale play in western-central Alberta (Canada). Our analysis reveals a high degree of correlation between core-measured mineral components and two wire-line logs: pulsed neutron spectroscopy (PNS) and spectral gamma ray (SGR). In particular, we show that PNS-derived calcium, aluminum, and silicon concentrations and SGR-derived thorium and potassium concentrations may be used to identify silica-rich, clay-rich, and carbonate-rich intervals, respectively, within the reservoir. We show that these intervals exhibit distinct mechanical properties, suggesting that they are also characterized by distinct hydraulic fracturing efficiency. Since well logs are generally more abundant than drill cores, our approach may prove critical in assessing predrill reservoir potential not only in the Duvernay but in similar unconventional plays worldwide.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号