首页> 外文期刊>Combustion, Explosion, and Shock Waves >Thermodynamically Consistent Detonation Model for Solid Explosives
【24h】

Thermodynamically Consistent Detonation Model for Solid Explosives

机译:用于固体炸药的热力学一致的爆轰模型

获取原文
获取原文并翻译 | 示例
           

摘要

An improved reactive flow model with thermodynamic consistency is proposed to deal with the detonation hydrodynamics of solid explosives. Based on the assumption that the chemical mixture composed of solid-phase reactants and gas-phase products can arrive at mechanical equilibrium, but cannot arrive at thermal equilibrium, the solid-phase reactants and gas-phase products may possess one pressure and one velocity, but two temperatures or internal energies. With the help of the energy conservation of the mixture and pressure equivalence between the constituents, the conservation equation of internal energy and the evolution equations of the volume fraction for the solid-phase reactants and of pressure for the chemical mixture are derived. Thus, the full governing equations of the proposed detonation model include the conservation equations of mass, momentum, and total energy, and the evolution equation of pressure for the chemical mixture, and the conservation equations of mass and internal energy, and the evolution equation of the volume fraction for the solid-phase reactants. The theoretical analysis shows that there exists a distinct discrepancy between the proposed model and the Zel'dovich-Neumann-Doring detonation model for the steady structure of the detonation wave. The numerical simulation results of typical detonation problems show that the important characteristics of detonation flows can be well captured and also demonstrate that the proposed detonation model of solid explosives is reasonable.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号