...
首页> 外文期刊>Clinical and experimental pharmacology & physiology >The nicotinamide phosphoribosyltransferase antagonist FK866 inhibits growth of prostate tumour spheroids and increases doxorubicin retention without changes in drug transporter and cancer stem cell protein expression
【24h】

The nicotinamide phosphoribosyltransferase antagonist FK866 inhibits growth of prostate tumour spheroids and increases doxorubicin retention without changes in drug transporter and cancer stem cell protein expression

机译:烟酰胺磷酰基转移酶拮抗剂FK866抑制前列腺肿瘤球状球体的生长,并增加了无剂氨酸素保留而不改变药物转运蛋白和癌症干细胞蛋白表达

获取原文
获取原文并翻译 | 示例

摘要

Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD) synthesis and is involved in cancer cell proliferation through regulation of energy production pathways. Therefore, NAMPT inhibitors are promising drugs for cancer therapy by limiting energy supply of tumours. Herein, we demonstrated that the NAMPT inhibitor FK866 ((E)-N-(4-(1-Benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) dose-dependently inhibited growth and cell motility of DU-145 prostate tumour spheroids and decreased the intracellular ATP concentration. The apoptosis marker cleaved caspase-3 remained unchanged, but the autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3) was upregulated. Growth inhibition was reversed upon co-administration of NAD to the cell culture medium. FK866 decreased calcein as well as pheophorbide A efflux from tumour spheroids and increased doxorubicin toxicity, indicating interference with function of drug efflux transporters. DU-145 multicellular tumour spheroids expressed the stem cell associated markers CD133, CD44, Oct4, Nanog, Sox2, and drug transporters ABCB1, ABCG2, and ABCC1 which are associated with stem cell properties in cancer cells. The ABCB1 inhibitor zosuquidar, the ABCG2 inhibitor Ko143, and the ABCC1 inhibitor MK571 increased calcein retention. Neither protein expression of stem cell markers, nor drug transporters was significantly changed upon FK866 treatment. In conclusion, our data suggest that FK866 inhibits prostate cancer cell proliferation by interference with the energy metabolism, and function of drug efflux transporters.
机译:None

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号