【24h】

Regulatory Domains and Their Mechanisms

机译:监管领域及其机制

获取原文
获取原文并翻译 | 示例
           

摘要

The concept of gene regulation is being refined as our understanding of the role of enhancer elements grows. Although described more than 30 years ago, the mechanisms through which these cw-regulating elements operate remain under debate. With the recognition that most of the human genetic variation contributing to common disease risk lies outside of genes and probably in enhancers, unraveling these mechanisms becomes ever more important. Originally, a popular view was to consider regulatory elements as an entry site for the transcription machinery that could scan the intervening chromatin until the cognate core promoter was located. Now, the most prominent model for distal enhancer-promoter interaction involves direct enhancer/promoter contacts with a looping out of intervening chromatin. However, a rising awareness of the importance of chromatin architecture and organization forces us to consider enhancer-promoter communication in light of the polymer folding properties of chromatin. Here, we discuss how three-dimensional chromatin folding, topological domains, and the constrained motion, plasticity, and accessibility of chromatin could offer a structural basis for regulatory domains that greatly enhances the probability of enhancer-promoter and transcription factor-promoter interactions and gene activation.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号