首页> 外文期刊>Circulation. Arrhythmia and electrophysiology >Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation
【24h】

Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation

机译:机械学习和机械模拟的预造型应用预测肺静脉分离后阵发性心房颤动复发的可能性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

BACKGROUND: Pulmonary vein isolation (PVI) is an effective treatment strategy for patients with atrial fibrillation (AF), but many experience AF recurrence and require repeat ablation procedures. The goal of this study was to develop and evaluate a methodology that combines machine learning (ML) and personalized computational modeling to predict, before PVI, which patients are most likely to experience AF recurrence after PVI. METHODS: This single-center retrospective proof-of-concept study included 32 patients with documented paroxysmal AF who underwent PVI and had preprocedural late gadolinium enhanced magnetic resonance imaging. For each patient, a personalized computational model of the left atrium simulated AF induction via rapid pacing. Features were derived from pre-PVI late gadolinium enhanced magnetic resonance images and from results of simulations of AF induction. The most predictive features were used as input to a quadratic discriminant analysis ML classifier, which was trained, optimized, and evaluated with 10-fold nested cross-validation to predict the probability of AF recurrence post-PVI. RESULTS : In our cohort, the ML classifier predicted probability of AF recurrence with an average validation sensitivity and specificity of 82% and 89%, respectively, and a validation area under the curve of 0.82. Dissecting the relative contributions of simulations of AF induction and raw images to the predictive capability of the ML classifier, we found that when only features from simulations of AF induction were used to train the ML classifier, its performance remained similar (validation area under the curve, 0.81). However, when only features extracted from raw images were used for training, the validation area under the curve significantly decreased (0.47). CONCLUSIONS: ML and personalized computational modeling can be used together to accurately predict, using only pre-PVI late gadolinium enhanced magnetic resonance imaging scans as input, whether a patient is likely to experience AF recurrence following PVI, even when the patient cohort is small. GRAPHIC ABSTRACT: A graphic abstract is available for this article.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号