首页> 外文期刊>Journal of thermal analysis and calorimetry >Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials
【24h】

Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials

机译:用聚脲/丙烯酸树脂杂交壳的微胶囊化石蜡的制备和热性能作为相变能储存材料

获取原文
获取原文并翻译 | 示例
       

摘要

Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining interfacial polymerization and suspension-like polymerization. Glycerin (GC) acts as a cross-linking agent to modify the shells. The morphologies, particle size distributions, thermal storage properties, thermal stabilities and thermal reliabilities of microencapsulated phase change materials (MicroPCMs) were determined by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). The temperature regulation performance of the foam with MicroPCMs was investigated by an infrared thermal imager. DSC results showed that MicroPCMs with polyurea/butyl methacrylate (PU/BMA) possess an improved heat ability and thermal reliability compared to MicroPCMs with polyurea/methyl methacrylate (PU/MMA). The incorporation of GC to shell-forming composition led to an enhancement in thermal storage capacity of the MicroPCMs. The MicroPCMs with GC-modified PU/BMA hybrid shell has the highest PCMs content by as much as 82.6 mass%. The change in latent heat of MicroPCMs with GC-modified PU/BMA hybrid shell was very small of less than 4 mass% after 500 thermal cycles. The infrared thermography indicated that the PU foam incorporating the MicroPCMs with GC-modified PU/BMA hybrid shell has better temperature-regulated property. In conclusion, the MicroPCMs with PU/BMA hybrid shells, especially with GC-modified PU/BMA hybrid shell, possess a promising prospect applying in energy-conserving building materials and thermal control system of shipping packages.
机译:采用界面聚合和悬浮聚合相结合的方法,原位制备了聚脲/丙烯酸树脂杂化壳微胶囊石蜡相变储能材料。甘油(GC)作为交联剂来修饰外壳。通过扫描电子显微镜(SEM)、差示扫描量热法(DSC)和热重分析(TG)测定了微胶囊相变材料(MicroPCMs)的形貌、粒度分布、储热性能、热稳定性和热可靠性。利用红外热像仪研究了微胶囊泡沫的温度调节性能。DSC结果表明,与聚脲/甲基丙烯酸甲酯(PU/MMA)相比,聚脲/甲基丙烯酸丁酯(PU/BMA)微球具有更好的热稳定性和热可靠性。将GC加入到成壳组合物中导致微PCM的蓄热能力增强。GC改性PU/BMA杂化壳的微PCMs的PCMs含量最高,达82.6%。GC改性PU/BMA杂化壳的微PCMS在500次热循环后的潜热变化非常小,小于4质量%。红外热像图表明,将微pcms与GC改性的PU/BMA杂化壳相结合的PU泡沫具有更好的温度调节性能。综上所述,具有PU/BMA杂化壳,尤其是GC改性PU/BMA杂化壳的微聚合物在节能建筑材料和运输包装热控制系统中具有广阔的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号