...
首页> 外文期刊>Journal of thermal analysis and calorimetry >Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs plus water) and hybrid nanofluid (CNTs plus CuO plus water)
【24h】

Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs plus water) and hybrid nanofluid (CNTs plus CuO plus water)

机译:熔融热传递在挤压碱(水),纳米流体(CNT加水)和杂交纳米流体(CNT加上CUO Plus水)

获取原文
获取原文并翻译 | 示例
           

摘要

Unsteady squeezed flow of hybrid nanofluid is investigated in this analysis. Comparison of hybrid nanofluid (using CNTs + CuO) and nanofluid (using CNTs) is emphasized. Water is considered as basefluid. Melting effect and viscous dissipation describe heat transfer features. Entropy production and Bejan number are addressed. Relevant flow expressions (PDEs) are transmitted into ODEs through suitable transformations. By means of numerical method (shooting technique with RK-4 algorithm), the obtained ODEs are solved. Comparative study of basefluid (water), hybrid nanofluid (using CNTs + CuO) and nanofluid (using CNTs) is performed for impacts of involved flow parameters on entropy production rate, velocity, Bejan number and temperature. Further comparative analysis of basefluid (water), hybrid nanofluid (using CNTs + CuO) and nanofluid (using CNTs) is done through numerical evaluation of Nusselt number. Velocity of fluid intensifies for larger values of squeezing parameter, nanoparticle volume fraction for single-walled CNTs or multi-walled CNTs, melting parameter and nanoparticle volume fraction for copper oxide in case of both nanofluid and hybrid nanofluid flow. Temperature of fluid enhances with increment in Eckert number while it can be controlled via larger nanoparticle volume fraction for single-walled CNTs or multi-walled CNTs, squeezing parameter, melting parameter and nanoparticle volume fraction for copper oxide. Rate of heat transfer or Nusselt number increases with larger estimation of squeezing parameter, nanoparticle volume fraction for copper oxide, melting parameter and nanoparticle volume fraction for single-walled CNTs or multi-walled CNTs. Entropy production rate is higher for squeezing parameter, melting parameter and Eckert number. Bejan number is reduced with melting parameter while it increases for larger squeezing parameter and Eckert number. During comparative analysis, the performance of hybrid nanofluid is efficient.
机译:本文研究了混合纳米流体的非定常压缩流动。重点比较了杂化纳米流体(使用碳纳米管+氧化铜)和纳米流体(使用碳纳米管)。水被认为是基础流体。熔融效应和粘性耗散描述了传热特性。讨论了熵产生和贝扬数。相关的流表达式(PDE)通过适当的变换传输到ODE中。采用数值方法(RK-4算法打靶技术)求解得到的常微分方程。对比研究了基础流体(水)、混合纳米流体(使用CNT+CuO)和纳米流体(使用CNT)的相关流动参数对熵产率、速度、贝扬数和温度的影响。通过Nusselt数的数值计算,对基础流体(水)、混合纳米流体(使用CNT+CuO)和纳米流体(使用CNT)进行了进一步的对比分析。在纳米流体和混合纳米流体流动的情况下,压缩参数、单壁或多壁碳纳米管的纳米颗粒体积分数、熔化参数和氧化铜的纳米颗粒体积分数越大,流体速度越快。流体的温度随着埃克特数的增加而升高,而对于单壁或多壁碳纳米管,流体的温度可以通过较大的纳米颗粒体积分数、压缩参数、熔化参数和氧化铜的纳米颗粒体积分数来控制。对压缩参数、氧化铜的纳米颗粒体积分数、单壁或多壁碳纳米管的熔化参数和纳米颗粒体积分数的较大估计会增加传热速率或努塞尔数。压缩参数、熔化参数和埃克特数对熵产率的影响较大。Bejan数随熔化参数的增大而减小,而随着压缩参数和Eckert数的增大而增大。在对比分析中,混合纳米流体的性能是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号