首页> 外文期刊>Journal of thermal analysis and calorimetry >Numerical study on the effects of geometrical parameters and Reynolds number on the heat transfer behavior of carboxy-methyl cellulose/CuO non-Newtonian nanofluid inside a rectangular microchannel
【24h】

Numerical study on the effects of geometrical parameters and Reynolds number on the heat transfer behavior of carboxy-methyl cellulose/CuO non-Newtonian nanofluid inside a rectangular microchannel

机译:几何参数和雷诺数对矩形微通道内羧基 - 甲基纤维素/ CuO非牛油烯烃纳米流体传热行为的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Present work studies the effects of microchannel height and Reynolds number on the temperature distribution behavior, pressure drop, and Nusselt number of a non-Newtonian nanofluid. The nanofluid is an aqueous solution of carboxy-methyl cellulose with a 1 percent volume fraction of copper oxide (CuO) nanoparticle, which is flowed at four Reynolds numbers of 250, 500, 750 and 1000, respectively, inside a rectangular microchannel with different heights size. Three dimensions in the order of H = 1 mm, H = 1.5 mm, and H = 2 mm are used for the microchannel height. Generally, it is concluded that increment of channel height and Reynolds number reduce temperature, whereas they increase heat transfer rate and Nusselt number due to their role in reducing thermal and hydrodynamics boundary layers thickness and flow concentration within the microchannel. Moreover, this phenomenon increases collision between hot and cold fluids due to decreasing their interval layer thickness. Also, increasing Reynolds number amplifies the pressure drop along the microchannel as well as increasing microchannel height. Therefore, it is concluded that the maximum temperature value of 430 K and maximum pressure drop of 7000 Pa have belonged to the case of studies with minimum and maximum microchannel height, respectively. On the other side, the maximum value of temperature is related to the minimum Reynolds number of 250, whereas maximum pressure drop is related to the maximum Reynolds number of 1000.
机译:本文研究了微通道高度和雷诺数对非牛顿纳米流体的温度分布行为、压降和努塞尔数的影响。纳米流体是一种羧甲基纤维素水溶液,含有1%体积分数的氧化铜(CuO)纳米颗粒,分别以250、500、750和1000的四个雷诺数在不同高度和尺寸的矩形微通道内流动。微通道高度采用三个尺寸,顺序为H=1 mm、H=1.5 mm和H=2 mm。一般来说,通道高度和雷诺数的增加会降低温度,但由于它们在降低热边界层和流体动力学边界层厚度以及微通道内的流动浓度方面的作用,它们会增加传热速率和努塞尔数。此外,由于热流体和冷流体的层间厚度减小,这种现象增加了它们之间的碰撞。此外,增加雷诺数会增大沿微通道的压降,并增加微通道高度。因此,可以得出结论,最大温度值430 K和最大压降7000 Pa分别属于最小和最大微通道高度的研究情况。另一方面,温度的最大值与最小雷诺数250有关,而最大压降与最大雷诺数1000有关。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号