...
首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >A new heat capacity law for UO2, PuO2 and (U,Pu)O-2 derived from molecular dynamics simulations and useable in fuel performance codes
【24h】

A new heat capacity law for UO2, PuO2 and (U,Pu)O-2 derived from molecular dynamics simulations and useable in fuel performance codes

机译:用于源自分子动力学模拟的UO2,PUO2和(U,PU)O-2的新型热容法,并在燃料绩效码中使用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a computationally efficient law of a nuclear fuel property obtained from molecular dy-namics calculations is implemented in a fuel performance code, bridging the gap between atomic and pellet scales. The Cooper-Rushton-Grimes potential is employed through molecular dynamics simulations to compute the heat capacity of stoichiometric mixed-oxide fuels U1-yPuyO2 from 10 0 0 K to the melting temperature, and over the whole range of plutonium content from pure UO2 (y = 0) to pure PuO2 (y = 1). The heat capacity is found to exhibit a peak at the temperature TB = 0.84 Tm, with Tm the melting tem-perature, for all the compounds with a significant effect of the plutonium content solely at high temper-atures (T > 1800 K), i.e. around the peak. This peak is related to the so-called Bredig transition known to occur around 0.8 Tm. An analytical law of heat capacity Cp(T,y) has been established from our molecular dynamics data, and is valid from 700 K to the melting temperature and for the entire range of plutonium content. Concerning UO2, a good agreement is found between our calculations and the most recent ex-perimental measurements. The law we propose in the present study has been implemented in GERMINAL V2, the fuel performance code developed by CEA to predict the in-pile behavior of mixed-oxide fuel in sodium-cooled fast reactors, and tested through the simulations of transient power test operated in the CABRI reactor. The results show that our law yields a lower margin to melting in the case of Reactivity-Initiated Accident, but throughout power ramp transient tests, the results obtained with our new law are very consistent with the reference heat capacity law currently used in GERMINAL. (C) 2021 Elsevier B.V. All rights reserved.
机译:在这项工作中,从分子动力学计算中获得的核燃料特性的计算效率定律在燃料性能代码中得到了实现,从而弥合了原子尺度和颗粒尺度之间的差距。库珀-拉什顿-格里姆斯势通过分子动力学模拟来计算化学计量混合氧化物燃料U1-yPuyO2从10 0 K到熔化温度的热容,以及从纯UO2(y=0)到纯PuO2(y=1)的整个钚含量范围。发现所有化合物的热容在TB=0.84 Tm(Tm为熔化温度)时出现峰值,仅在高温(T>1800 K)下,即峰值附近,钚含量对其有显著影响。这一峰值与已知发生在0.8 Tm左右的所谓Bredig转变有关。根据我们的分子动力学数据建立了热容Cp(T,y)的分析定律,在700 K到熔化温度以及整个钚含量范围内有效。关于UO2,我们的计算结果与最近的实验测量结果之间有很好的一致性。我们在本研究中提出的定律已在GERMONAL V2中实现,GERMONAL V2是CEA开发的燃料性能代码,用于预测钠冷快堆中混合氧化物燃料的堆内行为,并通过在CABRI反应堆中运行的瞬态功率试验模拟进行了测试。结果表明,在反应性引发事故的情况下,我们的定律产生了较低的熔化裕度,但在整个功率斜坡瞬态试验中,我们的新定律获得的结果与目前在生发电厂中使用的参考热容定律非常一致。(c)2021爱思唯尔B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号