...
首页> 外文期刊>Journal of Neurophysiology >Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics
【24h】

Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics

机译:对在线覆盖执行的前庭贡献是通过关于肢体生物力学知识的机制处理的

获取原文
获取原文并翻译 | 示例

摘要

Studies of reach control with the body stationary have shown that proprioceptive and visual feedback signals contributing to rapid corrections during reaching are processed by neural circuits that incorporate knowledge about the physical properties of the limb (an internal model). However, among the most common spatial and mechanical perturbations to the limb are those caused by our body's own motion, suggesting that processing of vestibular signals for online reach control may reflect a similar level of sophistication. We investigated this hypothesis using galvanic vestibular stimulation (GVS) to selectively activate the vestibular sensors, simulating body rotation, as human subjects reached to remembered targets in different directions (forward, leftward, rightward). If vestibular signals contribute to purely kinematic/spatial corrections for body motion, GVS should evoke reach trajectory deviations of similar size in all directions. In contrast, biomechanical modeling predicts that if vestibular processing for online reach control takes into account knowledge of the physical properties of the limb and the forces applied on it by body motion, then GVS should evoke trajectory deviations that are significantly larger during forward and leftward reaches as compared with rightward reaches. When GVS was applied during reaching, the observed deviations were on average consistent with this prediction. In contrast, when GVS was instead applied before reaching, evoked deviations were similar across directions, as predicted for a purely spatial correction mechanism. These results suggest that vestibular signals, like proprioceptive and visual feedback, are processed for online reach control via sophisticated neural mechanisms that incorporate knowledge of limb biomechanics.
机译:身体静止时的伸展控制研究表明,在伸展过程中,有助于快速纠正的本体感觉和视觉反馈信号是由神经回路处理的,神经回路结合了有关肢体物理特性的知识(一种内部模型)。然而,肢体最常见的空间和机械扰动是由我们的身体自身运动引起的,这表明用于在线伸展控制的前庭信号处理可能反映出类似的复杂程度。我们使用前庭电流刺激(GVS)来研究这一假设,当人类受试者以不同方向(向前、向左、向右)到达记忆目标时,我们模拟身体旋转,选择性地激活前庭传感器。如果前庭信号有助于对身体运动进行纯粹的运动学/空间校正,GVS应在所有方向上引起大小相似的到达轨迹偏差。相比之下,生物力学建模预测,如果用于在线伸展控制的前庭处理考虑到肢体的物理特性和身体运动施加在肢体上的力的知识,那么GVS应该在向前和向左伸展时引起比向右伸展时明显更大的轨迹偏差。当在到达过程中使用GVS时,观察到的偏差平均与该预测一致。相比之下,当在到达之前应用GVS时,诱发的偏差在各个方向上是相似的,正如纯空间校正机制所预测的那样。这些结果表明,前庭信号,如本体感觉和视觉反馈,通过复杂的神经机制,结合肢体生物力学知识,被处理用于在线到达控制。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号