首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Seed shape-controlled, facet-selective growth of superspiky gold nanocrystals for biosensing applications
【24h】

Seed shape-controlled, facet-selective growth of superspiky gold nanocrystals for biosensing applications

机译:种子形状控制,面部Piky金纳米晶体的刻面生长,用于生物传感应用

获取原文
获取原文并翻译 | 示例
       

摘要

Spiky plasmonic Au nanostructures have sparked considerable interest in plasmonic sensing, plasmon-enhanced spectroscopic biosensing and solar energy harvesting, owing to their distinctive complex three-dimensional structures and remarkable optical properties. Seeded synthesis is the premier route toward these superspiky Au nanocrystals, but spike growth on different types of Au seeds has remained largely unexplored. Here, we report the seeded synthesis of superspiky Au nanocrystals using Au spherical, cubic and nanorod seeds. The use of Au spherical seeds with varying sizes produces superspiky Au nanocrystals where the central core and spike dimensions increase as the seed concentration is decreased. A growth process that involves the facet-selective deposition and surface diffusion of Au atoms is observed for spike growth on Au cubic and nanorod seeds. A decrease in the seed concentration causes a redshift of the plasmon resonance wavelength of superspiky Au nanocrystals for all types of Au seeds investigated. This method provides control over the growth regions and the number and dimensions of spikes on Au seeds. These superspiky Au nanocrystals exhibit excellent plasmonic sensing and surface-enhanced Raman scattering (SERS) sensing performances that are dependent on their morphologies, which are tailorable by seed size and shape. A further examination reveals that a large SERS enhancement factor is achieved mostly using a near-infrared laser, which is attributed to the better resonance overlap of the plasmon band with the near-infrared laser wavelength. This work demonstrates the great potential of superspiky Au nanocrystals for versatile biosensing applications with tailorable plasmonic properties.
机译:针状等离子体金纳米结构由于其独特的复杂三维结构和显著的光学特性,在等离子体传感、等离子体增强光谱生物传感和太阳能收集方面引起了人们极大的兴趣。种子合成是获得这些超尖金纳米晶体的主要途径,但在不同类型的金种子上的尖峰生长在很大程度上尚未探索。在这里,我们报告了使用金球形、立方形和纳米棒籽晶的种子法合成超尖金纳米晶体。使用不同尺寸的金球形晶种可以产生超尖金纳米晶体,其中中心核和尖峰尺寸随着晶种浓度的降低而增加。在金立方和纳米棒晶种上观察到尖峰生长的生长过程,该过程涉及金原子的面选择性沉积和表面扩散。对于所研究的所有类型的金种子,种子浓度的降低会导致超尖金纳米晶体的等离子体激元共振波长红移。这种方法可以控制金种子的生长区域以及穗的数量和尺寸。这些超尖金纳米晶体表现出优异的等离子体传感和表面增强拉曼散射(SERS)传感性能,这取决于它们的形貌,这些形貌可根据种子的大小和形状进行调整。进一步的研究表明,主要使用近红外激光实现了较大的SERS增强因子,这归因于等离子体子带与近红外激光波长更好的共振重叠。这项工作展示了超尖金纳米晶体在具有可定制等离子体特性的多种生物传感应用中的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号