首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Dual functions of CO2 molecular activation and 4f levels as electron transport bridges in erbium single atom composite photocatalysts therefore enhancing visible-light photoactivities
【24h】

Dual functions of CO2 molecular activation and 4f levels as electron transport bridges in erbium single atom composite photocatalysts therefore enhancing visible-light photoactivities

机译:二氧化碳分子激活的双函数和4F水平作为电子传输桥中铒单原子复合光催化剂,因此增强了可见光的拍照

获取原文
获取原文并翻译 | 示例
           

摘要

Only when the interfacial charge separation is enhanced and the CO2 activation is improved, can the heterojunction nanocomposite photocatalyst be brought into full play for the CO2 reduction reaction (CO2RR). Here, Er3+ single atom composite photocatalysts were successfully constructed based on both the special role of Er3+ single atoms and the special advantages of the SrTiO3:Er3+/g-C3N4 heterojunction in the field of photocatalysis for the first time. As we expected, the SrTiO3:Er3+/g-C3N4 (22.35 and 16.90 mu mol g(-1) h(-1) for CO and CH4) exhibits about 5 times enhancement in visible-light photocatalytic activity compared to pure g-C3N4 (4.60 and 3.40 mu mol g(-1) h(-1) for CO and CH4). In particular, the photocatalytic performance of SrTiO3:Er3+/g-C3N4 is more than three times higher than that of SrTiO3/g-C3N4. From Er3+ fluorescence quenching measurements, photoelectrochemical studies, transient PL studies and DFT calculations, it is verified that a small fraction of surface doping of Er3+ formed Er single-atoms on SrTiO3 building an energy transfer bridge between the interface of SrTiO3 and g-C3N4, resulting in enhanced interfacial charge separation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and adsorption energy calculations demonstrated that the exposed Er single-atoms outside the interface on SrTiO3 preferentially activate the adsorbed CO2, leading to the high photoactivity for the CO2RR. A novel enhanced photocatalytic mechanism was proposed, in which Er single-atoms play dual roles of an energy transfer bridge and activating CO2 to promote charge separation. This provides new insights and feasible routes to develop highly efficient photocatalytic materials by engineering rare-earth single-atom doping.
机译:只有加强界面电荷分离,提高CO2活性,才能充分发挥异质结纳米复合光催化剂在CO2还原反应(CO2RR)中的作用。在这里,基于Er3+单原子的特殊作用和SrTiO3:Er3+/g-C3N4异质结在光催化领域的特殊优势,首次成功构建了Er3+单原子复合光催化剂。正如我们所料,SrTiO3:Er3+/g-C3N4(对于CO和CH4为22.35和16.90μmol g(-1)h(-1))的可见光光催化活性比纯g-C3N4(对于CO和CH4为4.60和3.40μmol g(-1)h(-1))提高了约5倍。尤其是SrTiO3:Er3+/g-C3N4的光催化性能比SrTiO3/g-C3N4高出三倍以上。通过Er3+荧光猝灭测量、光电化学研究、瞬态PL研究和DFT计算,证实了Er3+的一小部分表面掺杂在SrTiO3上形成了Er单原子,在SrTiO3和g-C3N4界面之间建立了能量转移桥,从而增强了界面电荷分离。像差校正的高角度环形暗场扫描透射电子显微镜(AC HAADF-STEM)和吸附能计算表明,SrTiO3界面外暴露的Er单原子优先激活吸附的CO2,导致CO2RR的高光活性。提出了一种新的增强型光催化机理,其中Er单原子起到能量转移桥和激活CO2以促进电荷分离的双重作用。这为利用稀土单原子掺杂技术开发高效光催化材料提供了新的思路和可行的途径。

著录项

  • 来源
  • 作者单位

    Heilongjiang Univ Sch Chem &

    Mat Sci Key Lab Funct Inorgan Mat Chem Minist Educ Harbin 150080 Peoples R China;

    Heilongjiang Univ Sch Chem &

    Mat Sci Key Lab Funct Inorgan Mat Chem Minist Educ Harbin 150080 Peoples R China;

    Heilongjiang Univ Sch Chem &

    Mat Sci Key Lab Funct Inorgan Mat Chem Minist Educ Harbin 150080 Peoples R China;

    Heilongjiang Univ Sch Chem &

    Mat Sci Key Lab Funct Inorgan Mat Chem Minist Educ Harbin 150080 Peoples R China;

    Linyi Univ Sch Phys &

    Elect Engn Linyi 276005 Shandong Peoples R China;

    Univ Tulsa Dept Phys &

    Engn Phys Tulsa OK 74104 USA;

    Heilongjiang Univ Sch Chem &

    Mat Sci Key Lab Funct Inorgan Mat Chem Minist Educ Harbin 150080 Peoples R China;

    Heilongjiang Univ Sch Chem &

    Mat Sci Key Lab Funct Inorgan Mat Chem Minist Educ Harbin 150080 Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn Changchun 130012 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号