...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor
【24h】

Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor

机译:促进Zn离子吸附在交联的N / P共同掺入多孔碳纳米液中,用于锌离子混合电容器

获取原文
获取原文并翻译 | 示例

摘要

Zinc-ion hybrid capacitors (ZHC) are promising new types of energy storage devices that combine many advantages of supercapacitors and batteries. However, the bottlenecks of low energy density and inferior cyclic stability urgently need to be addressed, and constructing advanced cathode materials is a feasible and effective strategy to overcome this barrier. Herein, we report a ZHC with enhanced performance obtained by incorporating N and P heteroatoms into cross-linked porous carbon nanosheets (CNPK) for promoting the Zn-ion adsorption. The ex situ XPS results during the charging and discharging processes proved the existence of -OH and Zn2+ chemical adsorption. Theoretical simulations revealed that the doping of N and P atoms can weaken the energy barrier of the reaction between the cathode and Zn2+; graphitic nitrogen and graphitic phosphorus are particularly significant for the reduction of the reaction energy barrier. Consequently, CNPK exhibited a high capacitance of 233 F g(-1) at 0.5 A g(-1) and low equivalent series resistance. The assembled aqueous ZHC demonstrated a capacity of 103.2 mA h g(-1) (232.2 F g(-1)) at 0.1 A g(-1), energy density of 81.1 W h kg(-1), power density of 13.366 kW kg(-1), and an excellent cyclic stability of 101.8% capacitance retention after 10 000 cycles in ZnSO4 electrolyte. A quasi-solid-state ZHC was assembled to verify the practical application, which delivered a high capacity of 141.0 mA h g(-1) at 0.1 A g(-1) and a remarkable energy density of 89.3 W h kg(-1). This work opens the door to the study of porous carbon materials for high-performance ZHCs.
机译:锌离子混合电容器(ZHC)结合了超级电容器和电池的许多优点,是一种很有前途的新型储能装置。然而,低能量密度和低循环稳定性的瓶颈亟待解决,而构建先进的阴极材料是克服这一障碍的可行而有效的策略。在本文中,我们报道了一种ZHC,通过将N和P杂原子加入交联多孔碳纳米片(CNPK)中来促进锌离子吸附,从而获得了性能增强的ZHC。充电和放电过程中的非原位XPS结果证明了-OH和Zn2+化学吸附的存在。理论模拟表明,N和P原子的掺杂可以削弱阴极与Zn2+反应的势垒;石墨态氮和石墨态磷对降低反应能垒尤为重要。因此,CNPK在0.5 a g(-1)时表现出233 F g(-1)的高电容和低等效串联电阻。组装的水性ZHC在0.1 a g(-1)下的容量为103.2 mA h g(-1)(232.2 F g(-1)),能量密度为81.1 W h kg(-1),功率密度为13.366 kW kg(-1),在ZnSO4电解液中进行10000次循环后,具有良好的循环稳定性,电容保持率为101.8%。为了验证实际应用,组装了一个准固态ZHC,其在0.1 A g(-1)下的高容量为141.0 mA h g(-1),显著的能量密度为89.3 W h kg(-1)。这项工作为高性能ZHCs多孔碳材料的研究打开了大门。

著录项

  • 来源
  • 作者单位

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

    China Univ Geosci Beijing Key Lab Mat Utilizat Nonmetall Minerals &

    Natl Lab Mineral Mat Sch Mat Sci &

    Technol Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号